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ABSTRACT

The development of example-based design support tools, such as those used for design-by-

analogy, relies heavily on the computation of similarity between designs. Various vector- and

graph-based similarity measures operationalize different principles to assess the similarity of de-

signs. Despite the availability of various types of similarity measures and the widespread adoption

of some, these measures have not been tested for cross-measure agreement, especially in a de-

sign context. In this paper, several vector- and graph-based similarity measures are tested across

two datasets of functional models of products to explore the ways in which they find functionally

similar designs. The results show that the network-based measures fundamentally operationalize

functional similarity in a different way than vector-based measures. Based upon the findings, we

recommend a graph-based similarity measure such as NetSimile in the early stages of design

when divergence is desirable and a vector-based measure such as cosine similarity in a period of

convergence, when the scope of the desired function implementation is clearer.

1 INTRODUCTION

Quantifying the similarity or dissimilarity between multiple designs (e.g., commercial products)

is essential for a variety of engineering design tasks. For example, design similarity is useful to

identify products for benchmarking [1]. Furthermore, within a company, analysis of similarity can

be used to evaluate the performance of product variants [2]. The concept of design similarity has

also been used to determine patent infringement [3], as well as to investigate how product style

changes over time [4].

In early-stage design, the concept of similarity has been found to be particularly important

for design-by-analogy. As information across different domains of designs becomes increasingly

accessible, it has become possible to leverage this data to provide sources of inspiration to de-

signers. Design-by-analogy is a commonly used method to transfer knowledge from cross-domain

sources and apply it to a target domain [5, 6]. When humans retrieve analogies on their own,

they can have difficulty moving past surface-level similarities, often finding within-domain analogs

that share readily-observed external attributes rather than underlying structural similarity. The
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presentation of computationally-determined real-time analogical stimuli during early-stage design

has been found to help designers produce novel outcomes [7]. Design cognition work has shown

that different analogical ‘distances’ can impact a designer’s ideation processes, even on a neural

level [8]. Therefore, it can be desirable to systematically control for the degree of similarity in de-

sign by analogy in order to leverage the effects of near vs. far analogs. In that case, it is critical to

clearly define near and far through a measure of similarity.

Computational systems grant the opportunity to search for analogies at an underlying struc-

tural level within a larger space and automatically determine the relevant analogous design. Since

these systems do not have to rely on surface-level similarities, they are able to retrieve more dis-

tant analogies based upon underlying functional patterns across domains [9]. Significant work

has been conducted on analogy retrieval based on semantic representations of products such as

design descriptions from a design problem solving session [7] or crowd-sourced design schema

representations [9]. However, it can be advantageous to focus on functional analogies to fur-

ther remove the possibility of fixation on surface similarities. To incorporate the advantages of

functional representations, researchers have developed a method to retrieve analogies using a

function-based approach on semantic data [10,11].

Functional models offer an alternative to semantic descriptions, providing structured system or

subsystem level representations that are useful for designers [12]. In addition, functional models

have been useful to standardize design representations in methods such as bio-inspired design,

where the source vocabulary is significantly different from that of the target [13]. A benefit of func-

tional models is that they contain domain knowledge that can be mapped to a mathematical space,

where a variety of measures are available to characterize the similarity between the designs.

The notion of functional similarity, critical to the comparison of designs, has not been tested

extensively within research on design similarity — an opportunity we address here. It is possi-

ble that different measures can return drastically different analogs if the measures do not define

similarity in the same way, analytically or conceptually, or if the measures define similarity in a

way that is not actually congruent with the expectations of the designer. Other applications might

also require similarity between designs to be defined in particular ways — different measures may
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be appropriate for different contexts. This work empirically questions the meaning of similarity in

engineering design by explicitly comparing multiple similarity measures and how they measure

similarity across functional models. Specifically, we investigate the identification of similar func-

tional models using vector space based methods, which are used frequently within the engineering

design community [14]. In addition, we explore the possibility of representing functional models

as networks by applying graph similarity measures. The work has direct implications for defining

analogical distance for computational systems, but is relevant for any context where it is necessary

to systematically determine the similarity between designs.

1.1 Similarity in Engineering Design

A variety of metrics have been used to define the similarity between designs. For instance, crit-

ical function chains have been extracted from functional models after which several matching met-

rics have been applied to determine similarity between the critical chains and find analogies [15].

Additionally, a vector-based similarity metric was developed to compare functional models from a

product repository using customer needs. The metric represents designs as a linear combination

of vector spaces, and has been shown to successfully find relevant analogies as demonstrated by

its example application in finding analogies to drive the design of a new guitar pickup winder [14].

However, it can be difficult to ensure that domain specific knowledge, such as customer needs, is

encoded within functional models. The metric has been used even without customer need weight-

ings [16,17], demonstrating an underlying assumption that notions of similarity will not significantly

change when the additional information is omitted. Furthermore, a significant body of work has

used natural language processing (NLP) in order to retrieve functionally similar designs from exist-

ing repositories (e.g., the U.S. patent database). Using NLP, designs are represented as vectors in

a high-dimensional vector space and compared using the cosine similarity measure, which is typ-

ically used to compare texts of different lengths. [10,11]. The use of latent semantic indexing and

cosine similarity (NLP-based measurement) has been compared with the use of the previously

described vector-based metric (functional model-based measurement) in the context of quanti-

fying similarity between automatically generated concepts [18]. Finally, recent work has applied

KL-divergence to determine similarity between designs in a way that embodies known principles of

Goucher-Lambert, MD-20-1869 4



Journal of Mechanical Design

similarity from cognitive science. This similarity metric represents knowledge about designs using

probabilistic graphical models and maps design characteristics to performance measures before

using KL-divergence to measure the similarity between design problems [19].

The engineering design community has also previously reviewed the use of similarity mea-

sures to compare designs at different stages of the design process. In a survey of similarity

metrics used in engineering design, spatial function, vector space, edit distance, template model,

and information theory approaches were evaluated holistically but qualitatively (i.e., no empiri-

cal results). It was determined that an edit distance or information theory approach should be

most suitable to compute similarity between designs at the function structure stage of the design

process [20]. Previous work has also investigated the dimensions of product similarity that are

deemed the most important when humans make similarity judgments for finding useful analogies,

with the results implying that function is more important than structure [21]. While various types

of metrics have been used to try to find design similarity, there has been a lack of empirical test-

ing on how the measures directly compare to each other and, therefore, no way to determine the

appropriate situations to use each one.

Quantitative measures of similarity between different designs are important in applications

such as design-by-analogy, given that prior research in engineering design reveals that analogies

of varying distances can have different impacts on design outcomes. Analogical distance refers to

how close the source design is to the target design, with analogies being divided into near-field and

far-field analogies. Previous work often classifies within-domain systems as near analogies and

out-of-domain systems as far analogies. Significant work has also been done to determine if the

analogical distance affects the novelty or quality of ideas, since far-field ideas may have functional

similarities that make them transferable. Studies on analogical distance have revealed contra-

dictory results, pointing to the benefits of far-field analogies, but the problems when analogical

distance is “too far” [10]. Thus, the results of this body of work indicate that the types of analogous

designs presented affect their usefulness to designers. If the choice of similarity measure signif-

icantly influences what is considered functionally similar, then different similarity measures can

offer new ways to find near-field and far-field analogies for design. More importantly, the outcome
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may necessitate reassessment of the choice of metric used to find analogous designs.

1.2 Functional Modeling

Functional modeling is a group of methods by which a product can be decomposed into its

key functions, providing an abstraction of the product that is useful for various stages of the de-

sign process. In early-stage design and concept generation, functional modeling can be used to

decompose a complex design into simpler sub-designs by using a black box approach [22]. In ad-

dition, functional modeling provides a way to capture important knowledge about existing designs

that is not captured in traditional documentation such as CAD models [23]. There are limitations

to using functional models, especially in early-stage design, since existing functional models are

typically created through reverse engineering. Additionally, there have been several approaches to

functional modeling [22,24–27], which may cause the models to vary based on who created them.

Mitigating this problem, the development of a functional basis has provided a common design

language, allowing meaningful comparisons at the functional level [28].

The functional basis allows a product to be represented by labeling its functions and flows

in pairs using a standardized vocabulary. There are three primary classes of flows (material,

energy, and signal) and eight primary classes of functions (channel, support, connect, branch,

provision, control magnitude, convert, and signal). These function and flow classes can have

a further secondary and tertiary specification, maintaining flexibility in the level of abstraction at

which a product can be modeled [23,28–30]. Once a product is modeled using these function-flow

pairs, the model can be mapped to a variety of mathematical representations that can be used

for further analysis. Specifically, the functional models can be mapped to a vector space or into a

network / graph.

1.3 Measures for a Vector-Space Representation

The majority of prior work utilizing functional models has mapped the functional models into

a vector space for similarity analysis. A functional model can be mapped to a vector space by

building a binary vector from each of the function-flow pairs. For example, this binary mapping was

used for the vector-based metric for similarity based on customer needs, as well as to investigate

the effect of varying the level of abstraction on functional similarity [14,16]. A variation of the binary
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mapping has been used to represent a higher level of abstraction by separately accounting for the

existence of unique functions and unique flows, instead of counting unique function-flow pairs [17].

In the method developed by McAdams and Wood, the elements of each functional model

mapped to a vector are weighted according to a customer needs rating. Then, product vectors

are constructed into a product-function matrix, which is normalized for product complexity and

customer enthusiasm rating, and re-normalized to unity. The inner product is then calculated be-

tween each product vector [14]. When the same process is followed without assigning weightings

according to customer needs, the results are equivalent to applying the cosine similarity metric,

which measures the cosine of the angle between the two non-zero vectors. The cosine simi-

larity varies between zero and one, with one being perfect similarity. The cosine similarity has

commonly been used in an engineering design context because of its applicability to any vector-

based representation, including semantic representations of designs. However, in the absence

of domain-specific weighting on specific functions (e.g. from customer needs), other metrics are

available to quantify the similarity or distance between two binary vectors and may be applicable to

compare functional models. Many metrics have been developed for this comparison according to

different requirements, only some of which are investigated here as representatives from different

classes of metrics [31].

1.4 Measures for a Network Representation

Networks mathematically represent the connections between entities. A network consists of

vertices (or nodes) that are connected by edges. They have been widely used in applications

such as social network analysis and have recently been utilized by the engineering design field.

For example, recent work has used networks to find bridges between ideas from different domains

using topic models [32] and to represent a conceptual design space for early-stage design [33].

In both cases, the networks are built from information in text documents and are not specific to

functional representations. At a system level, networks have been used to represent complex

systems and model system failure [34] as well as for the bio-inspired design of a power network

[35]. They have also been applied to represent influential function models in a product architecture

[36] and to investigate product transformation using graph edit distance on functional models [37].
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The edit distance has also been previously noted as a relevant similarity measure for comparing

function structures [20]. While networks are not currently widely used by the engineering design

community to represent product function or functional models, using network-based measures to

calculate functional similarity remains a promising direction that is further explored in this research.

Just like there are a variety of vector-based approaches to assess similarity, there are nu-

merous network similarity measures that can capture the structure of a network. These can be

divided into ones that require known node-correspondence — having a set or subset of matching

nodes — and those that can have unknown node-correspondence [38]. In addition, network simi-

larity measures can rely on network properties such as if the networks are undirected or directed

(pointing only in one direction) as well as if they are unweighted or weighted (the edges have a

positive continuous value) [39]. As such, functional models can be represented as networks from

which similarity is calculated in several ways. Some representative measures are chosen here to

illustrate the possible uses of network measures as measures of functional similarity.

2 RESEARCH METHODOLOGY

This paper investigates the impact of using different similarity measures on designs that may

be similar at the functional level. First, the functional models were mapped to the desired math-

ematical space (a binary vector or a network) as shown in Figure 1. Then, a similarity matrix

between all of the models in the repository was computed for each measure. The similarity ma-

trices were all range normalized so that the similarity score would be between zero and one.

The measures were quantitatively and qualitatively compared to gain insights regarding how each

measure considers designs to be similar.

2.1 Functional Model Data

In order to investigate a variety of quantitative techniques for measuring design similarity, in

this work we employed two separate datasets, each comprised of many functional models. The

first dataset, focused on a within-domain application, contained 39 energy harvesting devices [17].

The second dataset, focused on cross-domain applications, included 61 consumer products (e.g.,

kitchen appliances, toys, power tools, etc.) [40]. The energy harvesting dataset was chosen be-

cause designs in this dataset had previously been grouped into similar categories of designs,
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Fig. 1. The functional model data is in the form of a binary matrix connecting functions and flows. This matrix is flattened to a vector

(top) or used as an adjacency matrix and represented as a network (bottom) as shown in this example with the Nova Energy Tuna

Turbine. If the matrix contains a 1, an edge connects the function node to the flow node. If the matrix contains a 0, those nodes are

not connected. Functions can only be connected directly to flows, not other functions, and flows can only be connected directly to

functions, not other flows. The datasets include no information regarding the sequential ordering of function-flow pairs.

providing a reference for a human-based assessment of similarity. Designs in both datasets had

already been represented as functional models following rigorous protocols, thereby ensuring con-

sistency in the functional models within a dataset.

Analysis techniques were the same for each dataset. For both datasets, functions were speci-

fied to the secondary level while flows were (sometimes) specified to the tertiary level. For exam-

ple, the flow mechanical energy was clarified further to be rotational or translational. The functional

models did not include information about the sequencing of function-flow pairs in the system, the

repetition of any functions/flows, or the relative importance of any functions/flows. While both

datasets utilized the functional basis to specify product function, these functions were encoded

slightly differently, and such, the datasets are not directly compared to each other.

Energy harvesters. Since the set of energy harvesting devices is inherently similar by technol-

ogy, the similarity measures were expected to find systems that share a similar working principle

to be “near” in that dataset. The systems included energy harvesters that implement different

technologies to convert energy from one form to another and ranged from prototypes to com-
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mercial products. The energy harvesting functional models were categorized into technological

sub-domains as follows:

• 9 inductive vibration harvesters

• 6 piezoelectric vibration harvesters

• 6 wind harvesters

• 3 ocean-current/wave harvesters

• 6 solar harvesters

• 5 thermal harvesters

• 4 hybrid harvesters

Details about the categorization of the energy harvesting devices can be found in Appendix A.

Consumer products. The consumer product dataset was analyzed because it encompassed a

wider range of designs that were not necessarily from the same technological domain. These

products were not placed into sub-categories. The consumer product functional models were

specified using a vocabulary of 20 functions and 18 flows, compared to the energy harvesting

devices, which were described using a vocabulary of 21 functions and 16 flows (a list can be found

in Appendix B). The consumer product dataset was modified to match the level of abstraction of the

energy harvesting device dataset as much as possible, based on the functional basis vocabulary.

However, since the product function was determined separately and in a different context in each

case (fewer function-flow combinations were explicitly specified in the consumer product dataset),

there may be differences in the encoding of function between the two datasets. On average, a

device in the energy harvesters dataset contained 13 unique functions, 8 unique flows, and 107

total function-flow pairs. On the other hand, a device in the consumer products dataset contained

10 unique functions, 7 unique flows, and 16 total function-flow pairs. Further details about the

numbers of functions and flows can be found in Appendix A.

2.2 Measures of Similarity Using Vectors

The functional models were mapped to a vector space by building a binary vector from the

existence of function-flow pairs in the system. Therefore, for n functions and m flows, each func-

tional model was represented by a vector of zeros and ones of length n×m. These vectors were
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then used for any similarity computation. The similarity measures were chosen only if they were

applicable to binary data. The similarity measures do not always satisfy the specific definition

of a metric and therefore are not referred to as such. In addition, there was an effort to include

measures that have been previously used in or have the potential to be used in the engineering

design field. It should be noted that some measures are referred to (or calculated) as distances

and dissimilarities. These were always converted to measures of similarity before comparison.

The vector-based similarity measures explored in this work are described in more detail below.

Simple matching coefficient (SMC). The Hamming distance is the number of differences in cor-

responding positions of two binary vectors. Eq. 1a shows that the formula for Hamming distance

is

Hamming distance =
∑
|x1 − x2|, (1a)

where x1 and x2 are the two binary vectors being compared. The measure is often divided by

n (vector length) in computational packages to obtain a proportion. This proportion can then be

converted to the simple matching coefficient (SMC) as

SMC = 1−
∑
|x1 − x2|
n

. (1b)

The SMC can only be used on binary data and is useful if the features are symmetric. This means

that the absence or presence of the feature carries equal information.

Jaccard similarity coefficient . The Jaccard similarity coefficient and the SMC are close in their

comparison of binary vectors. Eq. 2 shows that the formulation of the Jaccard similarity coefficient

is

Jaccard similarity =
|x1 ∩ x2|
|x1 ∪ x2|

, (2)
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where x1 when x2 are the two binary vectors being compared. Unlike the SMC, however, the

Jaccard similarity coefficient excludes any features that are not present in either vector. Therefore,

it only accounts for mutually present matches between the vectors. The Jaccard similarity as

defined above can be used on binary data and modifications allow the measure to be used with

weights or probability distributions.

Cosine similarity . The cosine similarity determines similarity based on the the angle between

two vectors in a vector space. It is

Cosine similarity =
x1 · x2
‖x1‖‖x2‖

, (3a)

where x1 and x2 are the two vectors being compared. The quantitative similarity metric developed

by McAdams reduces to this measure when information about customer needs is not available.

When used on binary data, the equation can be rewritten as

Cosine similarity =
|x1 ∩ x2|
‖x1‖‖x2‖

. (3b)

The numerator is the same as in the Jaccard similarity coefficient from Eq. 2. The cosine similarity

can be used on binary data but does not need the data to be binary. It is commonly used in the

context of comparing text documents of different lengths since it compares the orientation of two

vectors in a high-dimensional abstract space.

2.3 Measures of Similarity Using Networks

To represent a functional model as a network, the functions and flows of each product were

first mapped to a binary matrix. Each function and flow was represented as a node and the edges

were determined by the values in the matrix. Edges between functions and flows existed only if the

binary matrix had a 1 in the corresponding row and column. The network comparison measures

were chosen based on prior work that compares these types of measures using random graph
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models and different (i.e. not design-related) real world networks in order to make recommenda-

tions related to their application based on local and global structure [39, 41]. The representative

measures were chosen so that they would be applicable to undirected and unweighted networks

because the functional models do not contain information about the direction of connections be-

tween different functions or about relative importance of functions (note that weighting can be

handled by the chosen measures but different measures might be needed for directed networks).

In addition, single feature-based approaches for network comparisons (clustering coefficient, cen-

trality, etc.) were not considered. The graph similarity measures were formulated as distances and

then converted to similarity for comparison. The networks were visualized and analyzed using the

NetworkX [42] and NetComp [41] libraries in Python.

NetSimile. NetSimile finds a graph’s “signature” vector based on features of its nodes [43]. The

features that are included are the node degree, the node clustering coefficient, average degree of

node neighbors, average clustering coefficient of node neighbors, number of edges in the node’s

egonet, number of neighbors in the node’s egonet, and the number of outgoing edges from the

node’s egonet. A node’s egonet is an induced subgraph of the neighbors centered around a node

within a certain radius. For example, in this case, an egonet would consist of a function and any

connected flows. The features are aggregated across nodes. Then, the Canberra distance,

Canberra distance =
∑ |x1 − x2|
|x1|+ |x2|

, (4)

is calculated between two feature vectors x1 and x2 where each element of a vector is the mean,

median, standard deviation, skew, or kurtosis obtained from feature aggregation.

Spectral distance. Spectral distances are based on the eigenvalues of a matrix. In this case, the

spectral distance is defined as

Spectral distance = ‖λL1 − λL2‖, (5a)
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where λL1 and λL2 are the eigenvalues of the Laplacian matrices (L1,L2). The Laplacian matrix is

Li = Di −Ai. (5b)

In addition to using the adjacency matrices (A1, A2) which indicate whether nodes, functions and

flows, are connected, the spectral distance accounts for the degree matrices (D1, D2) through the

Laplacian. The degree matrix is a diagonal matrix that indicates how many other nodes each node

is connected to.

When the Laplacian matrix is normalized, the spectral distance can be used to compare graphs

of different sizes. In addition, it does not require the nodes of the two graphs to be the same. When

computing a spectral distance, the number of eigenvalues that are considered can be adjusted,

allowing flexibility in considering community structure (fewer eigenvalues) or including local struc-

ture (more eigenvalues). Comparisons of several types of real world networks finds that spectral

distance is a reliable measure for different applications [41].

DeltaCon distance. The DeltaCon distance is a graph comparison measure intended to account

for the similarities in connectivity between two graphs. The pairwise node affinities are calculated

for each graph and compared to each other. The node affinities are calculated using a concept

called fast belief propagation (FBP), an approximation of the loopy belief propagation algorithm.

This is a message-passing algorithm often used on graphs in computer science [44]. The FBP

matrix is

S = [I + ε2D − εA]−1, (6a)

where ε is

ε =
1

1 + dmax
. (6b)
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ε is the constant that accounts for the influence of neighboring nodes and is computed using the

maximum value in the degree matrix (dmax). The FBP matrix can also be written as

S ≈ I + εA+ ε2(A2 −D) + ..., (6c)

demonstrating how it incorporates information about neighboring nodes using weighting. The final

distance is then

DeltaCon distance =
∑
|
√
S1 −

√
S2|. (6d)

Like the spectral distance, the DeltaCon distance uses both the adjacency matrix (A) and the

degree matrix (D). Fast belief propagation is intended to track the spread of information through

a graph, making the DeltaCon method good for local and global structure [41].

3 RESULTS

The vector and network-based similarity measures outlined in Section 2 were used to find the

similarity between the functional models of all pairs of devices in the energy harvesting data and in

the consumer product data. The results were stored in similarity matrices and then analyzed with

the objective of determining if the similarity measures return consistent results across functional

models and are measuring the same construct of similarity.

3.1 Overall Comparison of Similarity Measures

The similarity matrices, which are pairwise comparisons of the functional models as evaluated

by each similarity measure, were plotted as a distribution of scores. Comparing the distribution

of scores provides insight into if the measures are measuring comparable concepts of design

similarity at the functional level. The kernel density estimate of each similarity measure is shown

in Figure 2 for the energy harvesting devices and Figure 3 for the consumer products.

The mean and Pearson’s coefficient of skewness of the distributions were calculated for each
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measure as shown in Table 1 and Table 2. A large negative coefficient of skewness indicates that

the mass of the distribution is concentrated on the right (higher similarity), while a large positive

coefficient of skewness indicates that the mass of the distribution is concentrated on the left (lower

similarity).
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Fig. 2. Distribution of normalized similarity measures for energy harvesting devices.

Table 1. Mean similarity scores and coefficient of skewness of all energy harvesting devices. Shaded rows indicate measures that

have highly skewed distributions.

Measure Mean Similarity Score Skew

SMC 0.49 -0.07

Jaccard 0.31 0.97

Cosine 0.44 0.35

NetSimile 0.52 -0.03

Spectral 0.65 -0.81

DeltaCon 0.47 -0.06

The mean of the spectral similarity was the highest at 0.65 and 0.63 while the mean of the Jac-

card similarity was the lowest at 0.31 and 0.21. The distributions of similarity scores from these

two measures were highly skewed for both datasets. However, they were skewed in opposite

directions, which was unexpected. The Jaccard similarity distribution was concentrated towards

lower similarity, while the spectral similarity was concentrated towards higher similarity. The distri-

bution of the cosine similarity was moderately skewed. All other measures had distributions that

had a low skew. A set of pairwise Mann-Whitney U tests between the two distributions reveals that
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Fig. 3. Distribution of normalized similarity measures for consumer products.

Table 2. Mean similarity scores and coefficient of skewness of all consumer products. Shaded rows indicate measures that have

highly skewed distributions.

Measure Mean Similarity Score Skew

SMC 0.45 0.003

Jaccard 0.21 1.00

Cosine 0.33 0.26

NetSimile 0.39 0.15

Spectral 0.63 -0.72

DeltaCon 0.44 -0.09

the null hypothesis (i.e., that the populations are equal), is rejected (p ≤ 0.05). This indicates a

significant difference between the measures in relation to their computation of similarity between

designs in the two datasets. For example, one clear difference is evident from the kernel den-

sity estimate of the NetSimile measure, which demonstrates two peaks for the energy harvesting

dataset but only one peak for the consumer products dataset.

Next, the similarity matrices were used to determine if the results returned by each similarity

measure were distinct. Even if the distributions differed, it was possible that the rankings of each

product compared to each other product would not significantly differ among measures. For each

product, every other product was ranked in order of its similarity to the initial design (tied rankings

were included). The purpose of examining the rankings was to consider the possibility that even

if the value of similarity between two measures were different, the relative order of systems re-
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turned may not differ much. These rankings were then analyzed using the Kendall rank correlation

coefficient (Kendall’s τ ) to obtain a pairwise comparison between the methods.

Due to existence of a distribution of rank coefficients that depended on the initial system and

because of the small sample size, bootstrapping was used to find the 95% confidence interval

for the pairwise rank coefficient, as shown in Figure 4 and Figure 5. A positive rank correlation

coefficient close to one indicates that the two measures being compared return rankings that are

similar (i.e., they find the same types of functional models similar).

Vector

Network

Lowest rank correlation

Highest rank correlation

Fig. 4. Kendall rank correlation coefficients between similarity measures are shown, using each of the 39 energy harvesting devices

as the “target” design. The mean and 95% confidence interval from bootstrapping (n=500) is shown for each pair of measures.

Despite there being a distribution of rank correlation coefficients, the rank correlation analysis

revealed only a moderate correlation between most similarity measures. However, the Jaccard

and cosine similarity measures were highly correlated within a relatively narrow interval. In addi-

tion, the spectral similarity measure showed a very weak correlation with all vector measures and

only showed a higher correlation with NetSimile, another network measure. SMC, a vector mea-

sure, and DeltaCon, a network measure showed a moderately high correlation despite significant

Goucher-Lambert, MD-20-1869 18



Journal of Mechanical Design

Vector

Network

Lowest rank correlation

Highest rank correlation

Fig. 5. Kendall rank correlation coefficients between similarity measures are shown, using each of the 61 consumer products as the

“target” design. The mean and 95% confidence interval from bootstrapping (n=500) is shown for each pair of measures.

differences in their mathematical formulation. These results were consistent across both datasets.

3.2 Comparison of Measures within Categories

The energy harvester functional models shared a common intended purpose, with each device

further labeled as a specific type of energy harvesting device (wind, solar, etc.). It was expected

that devices within these categories have similar working principles and hence should be similar.

The categorizations for each device can be found in Appendix A. The mean similarity was calcu-

lated for the systems within these predefined energy categories as shown in Table 3. Highlighted

cells indicate category-level mean similarity scores that are not greater than or equal to the overall

mean similarity score.

The within-category similarity was generally higher than the mean similarity of all energy cate-

gories, although statistical significance was not determined due to small sample size. Hybrid sys-

tems, which were predefined to contain multiple energy categories, had a lower within-category
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Table 3. Mean similarity scores of energy harvesting devices grouped by category. Shaded cells indicate within-category means that

are lower than the overall mean for the similarity measure.

Measure Category Mean Similarity Score Mean Similarity Score

Inductive Piezoelectric Wind Wave Solar Thermal Hybrid

(n=9) (n=6) (n=6) (n=3) (n=6) (n=5) (n=4)

SMC 0.61 0.64 0.75 0.67 0.54 0.64 0.45 0.49

Jaccard 0.41 0.31 0.58 0.44 0.40 0.52 0.38 0.31

Cosine 0.55 0.44 0.72 0.59 0.55 0.64 0.52 0.44

NetSimile 0.59 0.43 0.57 0.44 0.56 0.56 0.53 0.52

Spectral 0.71 0.70 0.75 0.72 0.61 0.68 0.54 0.65

DeltaCon 0.60 0.67 0.67 0.59 0.54 0.58 0.39 0.47

similarity in half of the measures. However, piezoelectric devices had a lower within-category sim-

ilarity using the Jaccard, cosine, and NetSimile measures while the hybrid devices did not. Other

exceptions included solar devices, which had a lower within-category similarity using the spec-

tral measure and wave devices, which had a lower within-category similarity using the NetSimile

measure.

Given the assumption that within-category devices should reasonably share the same working

principle as well as higher similarities for within-category devices, it was expected that the device

pairs that were considered the “most similar” would be devices of the same category. Table 4

shows the pairs of energy harvesting systems that were considered the most similar by each

measure. The systems are color-coded by category (found in Appendix A).

This was true in almost every case, where the pair of most similar systems was a set of either

thermal, wind, or solar harvesters. However, the spectral measure returned different pairs than

any of the other measures, finding devices from different categories to be the most similar. In

addition, the spectral measure returned groups that had a similarity score of 1 (perfect similarity),

despite containing different devices. Even for the other measures, there was no agreement which

specific devices were “most similar” in absolute terms (e.g. which was more similar, the pair of

wind harvesters or the pair of thermal harvesters?).

Table 5 shows the pairs of consumer products that were considered the most similar by each
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Table 4. Pairs of devices with the highest similarity score (thermal, wind, solar, wave, inductive, and piezoelectric devices). For the

spectral measure, there was a group of three devices that had the highest similarity.

Measure Systems Similarity

SMC Micropelt STM-PEM
Micropelt TE-power Ring

0.95

Jaccard Four Seasons
Enviro-Energies

0.88

Tracking System
Solar Heat Engine w/ Mirrors

Cosine Four Seasons
Enviro-Energies

0.93

Tracking System
Solar Heat Engine w/ Mirrors

NetSimile Nova Energy Tuna Turbine
WindTamer

1

U Texas Prototype
Heel-impact Shoe Harvester

Spectral Wing Wave Generator
Michigan U Piezo Flag

1

Nova Energy Tuna Turbine
WindTamer

U Texas Prototype
Heel-impact Shoe Harvester

Columbia Power Manta Buoy
Micropelt STM-PEM
Enocean Eco 100

DeltaCon Micropelt STM-PEM
Micropelt TE-power Ring

0.91

measure. The results on this dataset showed much more agreement. This time, a coffee maker

and iced tea maker were considered to be the most similar by every measure except for the

spectral measure. The agreement indicates less uncertainty around what products are functionally

similar in the consumer products dataset compared to the energy harvesting dataset.

The similarity matrices were then subjected to hierarchical clustering to determine if the differ-

ent high-level categories could be recovered from the lower-level functional attributes using any of

the measures. Figure 6 shows an example of hierarchical clustering using the Jaccard measure.
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Table 5. Pairs of products with the highest similarity score

Measure Systems Similarity

SMC Mr. Coffee Coffee Maker-RBS
West Bend Iced Tea Maker-RBS

0.97

Jaccard Mr. Coffee Coffee Maker-RBS
West Bend Iced Tea Maker-RBS

0.96

Cosine Mr. Coffee Coffee Maker-RBS
West Bend Iced Tea Maker-RBS

0.98

NetSimile Mr. Coffee Coffee Maker-RBS
West Bend Iced Tea Maker-RBS

0.94

Spectral Presto Popcorn Popper
Horseman Swimming Toy

0.95

DeltaCon Mr. Coffee Coffee Maker-RBS
West Bend Iced Tea Maker-RBS

0.98

Although there are several methods available to choose the number of clusters, seven clusters

were chosen in order to ascertain the measures’ ability to cluster the designs into the general cat-

egories of energy harvesting devices based on the semantic label (wind, wave, solar, etc.). None

of the measures were able to recover these category groupings perfectly.

To test the differences in groupings across measure, Table 6 shows the largest percentage

of within-category devices that were grouped together. For example, for the Jaccard and cosine

measures, all of the wind harvesters were grouped together, while 4/5 of the thermal harvesters

were grouped together. On average, the vector measures grouped “more similarly” to the higher-

level categories, having a higher mean percentage of within-category devices in a cluster. The

network measures, especially the NetSimile and spectral measures, tended to not group designs

based on the higher-level categories. This indicates a clear difference between the definition of

similarity at a higher-level vs. lower-level description of function using the network measures.

4 DISCUSSION

This work shows that the choice of similarity measure changes empirical findings on design

similarity. Calculations of design similarity are therefore sensitive to different concepts of similarity

rather than a normative conception of similarity. Based on previous qualitative analysis on the
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Fig. 6. Hierarchical clustering using the Jaccard measure on the energy harvesting dataset. Seven clusters are selected correspond-

ing with the seven predetermined categories.

Table 6. The largest percentage of energy harvesters within a certain category clustered together by each measure, using hierarchical

clustering with seven clusters. Shaded cells indicate the measures with the lowest percentage within a category.

Measure Category Mean

Inductive Piezoelectric Wind Wave Solar Thermal Hybrid

(n=9) (n=6) (n=6) (n=3) (n=6) (n=5) (n=4)

SMC 56 67 67 100 50 80 50 67

Jaccard 56 67 100 100 67 80 50 74

Cosine 56 67 100 100 50 80 100 79

NetSimile 44 33 50 67 33 40 50 45

Spectral 33 33 50 67 33 60 25 43

DeltaCon 56 67 67 100 50 80 50 67

energy harvesting device data used in this study, it was determined that all of the energy harvesting

devices have a similar function structure in general, but differ in some supplemental functions and

flows. This overarching structural similarity was not captured in the quantitative metric originally

used to compare the devices [17]. Even here, the different measures show different spreads of
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similarity values as shown in Figure 2. The spectral distance has been found to work well to

distinguish designs when networks have very similar degree matrices but not the same specific

functions. In this context, it can be expected that the degree distributions are very similar around

common functions, such as convert (a key function for energy harvesting devices since they are

all converting some input to a form of usable energy flow). On the other hand, measures such

as the Jaccard similarity find the complete opposite, indicating low similarity among the set of

devices. Based on this, it seemed as if the spectral measure would be able to reflect a domain

level similarity among the energy harvesting systems through its skew towards higher similarity

scores. Given that the results skew high even with a dataset of products that are not in the same

technological domain, this is not likely the case. However, the spectral measure does appear to

capture something that is not captured by the other measures — a potentially varying notion of

similarity. In an attempt to understand what exactly it is that the network measures are capturing,

the designs were changed from their original form to observe the resulting impact on similarity.

4.1 Similarity Measures Applied to Perturbed Data

The measures were examined closely to investigate specific aspects of functional similarity that

are captured by different measures. For instance, is similarity determined by individual function-

flow pairs, patterns of function-flow pairs, or an overall structure of connections between functions

and flows? Two additional analyses were conducted: one to examine how a specific function and

all of its connected flows affected the similarity and one to examine how switching the flows asso-

ciated with function-flow pairs affected the similarity. Insights gained from the additional analyses

inform when network measures may and may not be suitable in the context of engineering design.

4.1.1 Search for specific functions

Understanding the level at which specific function-flow pairs influence the similarity might be

desirable in order to find similar designs using only parts of a functional model. Parts of the

functional model can be targeted by focusing on how the measures operate on subgraphs of the

functional model. The subgraph considered here is one function and all of the flows that are

immediately connected to it (also called the function node’s egonet) which we call the function

subgraph. The similarity was calculated between the function subgraph of one product and the
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corresponding function subgraph of all other products (using the energy harvesting dataset). Then,

the similarity was calculated between the function subgraph of one product and the full graphs of

all products. The rankings were compared using Kendall rank correlation coefficients. Figure 7

shows the process as well as examples of rank correlation results.

Fig. 7. Similarity rankings for a function subgraph in one product and the full functional model of all products are correlated with sim-

ilarity rankings for a function subgraph in one product and the corresponding function subgraphs of all products. A shaded correlation

matrix across all functions and products shows that vector-based measures such as SMC find rankings to be highly correlated while

network-based measures such as the spectral distance have much more variation, indicating a significant difference in the importance

of specific function subgraphs for determining functional similarity.

For the SMC measure, using a subgraph as an “input” and considering similarity with the full

models returns the same rankings as considering similarity with the corresponding function sub-
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graphs. Therefore, searching for a subgraph within a full model is likely to return consistent results

with just comparing the subgraphs using this measure. The consistently high rank correlation is

not present with network-based measures such as the spectral measure, with the rank correlation

depending on what product or function is the “input.” This variation indicates that these measures

are likely to be less useful when searching for specific subgraphs within a larger model, as the

similarity is not captured at the level of specific subgraphs. There are indications from this analy-

sis that the network-based measures do not place importance on what the specific functions are

within the functional model.

4.1.2 Determination of specific flows

One limitation of using functional models for design-by-analogy in the early design process is

that determining specific functions and flows indicates a higher level of detail than may be desired

at that stage. However, measures that place less importance on the specific functions/flows and

more on the connections between different functions/flows can be useful in overcoming this limi-

tation. To illustrate this idea, the functional model was perturbed by swapping the columns of the

encoding binary matrix. In the network view, swapping the columns means changing the name of

the network’s nodes. In a design context, changing the node names might represent, for example,

changing the functional model of a motor to that of a generator - instead of converting electrical

energy to mechanical energy, doing the reverse. In this case, the perturbation is a direct swap of

flow nodes with no consideration of whether the perturbed model is a realistic one or if unrealistic

function-flow pairs are created. However, swapping the nodes can show whether the specification

of individual functions or flows affects the computational determination of similarity. All unique

combinations of flow nodes were swapped and then the similarity between the perturbed model

and the original model was calculated. These similarity scores were then averaged to obtain a

single value for each energy harvesting device.

Figure 8 indicates that two of the network based measures (NetSimile and spectral) are less

affected by the specific flows — demonstrated by the higher similarity values. This indicates

that functional models with relevant connections will be considered similar even if the flows are

transient, demonstrating the ability of the two measures to capture the overall structure of the
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Fig. 8. Similarity scores across measures for energy harvester designs perturbed by swapping pairs of “flow” nodes.

functional model without prioritizing the details (i.e. specific functions and flows).

4.2 Implications for Design

Being able to compare the similarity between designs remains critical for leveraging computa-

tion in engineering design. Examining the impact of using a particular measure across the cate-

gorized energy harvesting device dataset provided insight into what should be considered when

computing design similarity from a functional perspective. For example, the network measures

do not necessarily scale similarity in the same way as more simple measures, demonstrated by

the variation in distributions of similarity scores. Additionally, network measures do not appear

to categorize the energy harvesting devices into the human-determined technological categories

as well as the vector-based methods that match different functions and flows, as shown by the

clustering results. Prior work from Weaver et al. qualitatively indicated that the energy harvesting

devices generally have a similar function structure, but differ in some supplemental functions and

flows. If there is an overarching structural similarity across the devices, measures should also find
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cross-category devices to have high similarity [17]. Measures such as the cosine and Jaccard

similarity, which focus on individual functions (e.g. matching the existence of “liquid” across wave

generators) may not be well-suited for this purpose. However, it is possible that network measures,

which assess similarity more holistically, are a viable alternative. The network measures used in

this work do seem to capture aspects of functional model structure as represented by the connec-

tions between functions and flows rather than the specific functions and flows themselves. This

property is demonstrated by their robustness to the swapping of specific nodes. Therefore, even in

the functional model’s simple undirected form, there is a possibility to use these network measures

when searching for unintuitively similar ways in which a design might work or to find cross-category

designs. Table 7 summarizes these considerations, based on the analyses conducted in this work.

Table 7. Qualitative comparison of the characteristics of each measure. Score Distribution is considered across both datasets while

all others are considered based on analysis using the energy harvesting device dataset. For Within-category Grouping and Subsystem

Match the measures are qualitatively ranked from 1 (Best) to 6 (Worst).

Measure
Score

Distribution
Within-category

Grouping
Robust to

Perturbation
Subsystem

Match

SMC No skew 3 No 1

Jaccard Low skew 2 No 3

Cosine Low skew (slight) 1 (Best) No 1

NetSimile Inconsistent 5 Yes 5

Spectral High skew 6 (Worst) Yes 6

DeltaCon No skew 3 No 4

4.2.1 What to consider when choosing a similarity measure

In this study, vector and network measures are empirically compared across two functional

model datasets. The results reveal that network measures that have not been widely applied to

design similarity, such as the spectral distance and NetSimile, do indeed return “similar” designs

in a way that is different from other measures. This is indicated by the low rank correlation coef-

ficients between network measures and all the vector-based measures. This demonstrates how

differently network-based measures are impacted by perturbations and subgraph-level searching.
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It is possible that the abstraction level of the design representation plays a significant role in these

differences.

Prior work has used pruning rules to distill detailed functional representations into those that

only include the core functions and flows (a higher abstraction) in an attempt to ensure that the

functional similarity determined by vector-based measures is more meaningful [16,45]. It is useful

to conduct this type of pruning before using a measure such as the Jaccard similarity because the

presence of a core function or flow between two designs will highly influence the similarity score.

For example, based on how the SMC measure works on functional models, if two purely mechani-

cal devices are both missing the “electrical energy” flow, their calculated similarity would increase.

Using the Jaccard measure to compare the same two devices would not capture this implied sim-

ilarity. However, reducing the information in the functional model might not be necessary when

using a network measure since a core flow node might be connected to many function nodes (or

vice versa) and this is directly incorporated into the similarity calculation. Specific comparisons

at the individual function level play a smaller role in the network-based NetSimile and spectral

distances. For example, in NetSimile the individual functions are not directly compared across

devices, but are aggregated and then compared. Therefore, the comparison is at a higher-level.

Based on the ways in which each measure operates to compare functional representations, it is

likely that both the level of complexity of designs and information contained in the functional model

influence which measure should be used in a design context. In this case, we refer to increasing

complexity as having an increasing number of function-flow pairs. The Jaccard similarity might

suffer when comparing designs of varying complexity, as designs with high and low numbers of

function-flow pairs inherently decrease in similarity score due to the mismatch (again, pruning may

help here). Cosine similarity might also be affected by this difference in complexity, but one benefit

of its formulation is that it can be used even if the functional structures are not represented in a

binary way (i.e. the existence or absence of functions) and more information is included. The

SMC is specifically affected when comparing two low complexity designs as the similarity might be

artificially inflated by many missing functions, especially if the comparison is being made in a global

set of devices of varying complexity. In many ways, the DeltaCon network measure is similar to
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SMC, as it requires the functional structures to match in their node labels (functions/flows) before

comparison. However, like cosine similarity and all of the other network measures, it carries the

benefit of being flexible to utilizing additional information such as weighting. Finally, a network

measure like NetSimile is specifically designed to handle comparisons of graphs of different sizes,

making it more suitable for comparing designs of varying complexity.

4.2.2 Using similarity measures to find “near” or “far” functional analogies

Finally, if analogical stimuli are provided to designers computationally, the choice of similarity

measure to retrieve the “right” stimulus becomes important. Work in analogical design has implied

that stimuli from a “sweet spot” between near-field and far-field help designers in the design pro-

cess, but has also noted that the meaning of near and far varies across the literature [10]. The

results of this work indicate that the choice of similarity measure impacts what types of systems

are considered functionally similar (and consequently, what might be returned as near or far). For

instance, measures that are better able to capture structural similarity might return, as a near

example, a result that another measure (or a human designer) might consider a far example.

More broadly, some measures might be better suited to either design exploitation or design

exploration. A higher-level notion of similarity can be useful to provide unintuitive but similar exam-

ples that aid divergence during design exploration. However, it may not be useful when designers

want to transfer aspects of an existing design that matches their needs to a new design. In the

latter case, which can be important when converging on an idea later in the design process, it

might be better to have a measure that returns designs that are more similar (e.g. for energy har-

vesters, a within-category device). Therefore, these results can lead to a better understanding of

how specific similarity measures can be leveraged for specific purposes within engineering design.

For near (within domain) designs, the choice of similarity measure is not as critical — a majority

of the measures tend to result in the same sets of systems returned as the most “similar.” However,

if the functional model is represented as a network, very different results can be found using

the spectral distance. Therefore, a network measure like the spectral measure may not perform

particularly well to exploit already refined target designs, but could be more useful than vector-

based methods for design exploration.
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4.2.3 Recommendations and limitations

There are some limitations to this study. Mapping the functional models with no functions

repeated, no information about sequential order of functions, or no weighting of importance, is

unlikely to work for a very complex system that has most or all of the functions from the functional

basis. A more complex system can be more easily be mapped to a network as demonstrated

in previous work if more detail about function repetition or importance is available [34]. Even

at the current level of detail, however, the results indicate that the choice of similarity measure

might depend on whether the desired task is for design exploitation or exploration, as well as on

the types of products in question. Table 8 qualitatively summarizes the differences in how the

measures determine functional similarity.

Table 8. Description of how measures determine functional similarity and design-relevant considerations for use. Complexity refers

to differences in the number of components and functions being implemented by the systems being compared. Weighting refers to if

the measure can handle more information such as weighting of the importance of a function. Use in DbA refers to the potential for

finding near or far stimuli based on the types of examples returned as most similar.

Measure Similarity Principle Complexity Weighting Use in
DbA

SMC Utilizes the absence of key function-
flow pairs

Similar complexity No Near

DeltaCon Utilizes the absence of key function-
flow pairs

Similar complexity Yes Near

Jaccard Matches function-flow pairs that exist in
at least one of the systems

Similar complexity Yes Near

Cosine Matches function-flow pairs that exist in
at least one of the systems

Varying complexity Yes Near

NetSimile Finds patterns in the connections be-
tween functions and flows with less fo-
cus on what the specific functions are

Varying complexity Yes Far

Spectral Finds patterns in the connections be-
tween functions and flows with less fo-
cus on what the specific functions are

Similar complexity Yes Far

The energy harvesters represent a set of products of varying complexity that might not have
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surface or form similarities, but are related to each other functionally. When performing design-

by-analogy for such types of products, a computational approach to finding the similarity between

them might be particularly useful. However, since it is possible to define the similarity between

products in several ways, the measure choice can lead to different analogies that might influence

a designer’s trajectory. Therefore, the following are recommendations to consider:

• Use a measure like NetSimile or spectral distance for divergent design exploration

• Use a measure like NetSimile or spectral distance when searching for different or new methods

to achieve specific functional implementations (e.g. a water-powered vs. wind-powered turbine

or optical vs. mechanical switches in keyboards)

• Use a measure like cosine similarity when searching for examples of particular functional im-

plementations for refinement or convergence

Finally, to truly understand the use of specific similarity measures in the context of design ex-

ploration or exploitation, it is important to determine whether the types of results provided by

unexplored network-based distances, like the spectral distance, would be useful to designers in

practice. Would the measures be retrieving examples that are “too far” or “just right”?

5 CONCLUSION

An empirical analysis of how different similarity measures determine the similarity of designs

represented at a functional level indicated that the choice of measure will follow various constructs

of similarity. As such, designers and scholars developing computational design-by-analogy design

support tools must pay particular attention to the details of the similarity measure, and not simply

rely on the notion that any metric can find “similar” designs. The analysis found some network

measures, such as NetSimile and the spectral distance, to be a potentially viable alternative to

vector measures for early-stage contexts, as they do not rely heavily on the lower-level features of

the design representation (e.g. function-flow pairs in this work). However, what these measures

consider to be functionally similar may not be immediately obvious or intuitive, and may be mis-

leading during periods of convergence. The results are particularly relevant to determining near

vs. far analogical stimuli and aiding in design exploitation vs. exploration. This research is a step

toward understanding which similarity measures should be used during different design stages.
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Though only tested on functional models in the present study, the results imply the need to care-

fully consider the choice of similarity metric in research that requires a measurement of design

similarity, regardless of the design representation.
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APPENDIX A CATEGORIZATION OF ENERGY HARVESTING DEVICES

Category Systems Unique Functions Unique Flows Total Pairs
Inductive Perpetuum FSH/C

Enocean Eco 100
Clarkson U Prototype
Michigan U PFIG
U Texas Prototype
Seiko Kinetic Watch
AA Battery Harvester
Socket
Kinetic Flashlight

9
11
13
13
15
16
15
12
15

6
7
7
6
7
9
9
8
8

54
77
91
78
105
144
135
96
120

Piezoelectric MIDE Volture
Bistable Buckling Harvester
Heel-impact Shoe Harvester
Innowattech Road/Rail
Piezo Backpack Straps
U Texas Prototype

12
10
15
12
12
17

6
5
7
3
5
7

72
50
105
36
60
119

Wind WindTamer
Leviathan
Enviro Energies
Four Seasons
Humdinger Wind Belt
Michigan U Piezo Flag

13
12
13
13
9
10

10
9
9
8
8
8

130
108
117
104
72
80

Ocean-
current/Wave

Nova Energy Tuna Turbine
Columbia Power Manta Buoy
Wing Wave Generator

13
11
10

10
7
8

130
77
80

Solar Solar Heat Engine w/ Mirrors
Tracking System
Inflatable Mat
Big Belly Trash Compactor
Transparent Film on Window
Seiko Solar Watch

16
18
14
19
8
16

7
7
9
10
6
8

112
126
126
190
48
128

Thermal Seiko Thermic Watch
Enocean ECT 310 Perpetuum
Micropelt TE-power Probe
Micropelt TE-Power Ring
Micropelt STM-PEM

17
14
11
11
11

10
7
9
8
7

170
98
99
88
77

Hybrid Solar Powered Sterling Engine
Solar/Wind Streetlamp
Kinesis Wind/Solar
Hymini Wind/Solar Crank

11
15
17
18

10
10
11
12

110
150
187
216

*Additional data for consumer product dataset available on request
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APPENDIX B LIST OF FUNCTIONS AND FLOWS

Functions Flows
Separate
Distribute
Import
Export
Transfer
Guide
Couple
Mix
Actuate
Regulate
Change
Stop
Convert
Store
Supply
Sense
Indicate
Process*
Stabilize
Secure
Position

Solid
Human
Gas
Liquid
Mixture**
Human Energy
Mechanical Energy
- Rotational Mechanical Energy
- Translational Mechanical Energy
- Vibrational Mechanical Energy
Pneumatic Energy
Hydraulic Energy
Light Energy
Electrical Energy
Magnetic Energy*
Thermal Energy
Acoustic Energy**
Chemical Energy**
Status
Control

*Only in energy harvesting dataset **Only in consumer products dataset
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