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ABSTRACT

Function drives many early design considerations in product development, highlighting

the importance of finding functionally similar examples if searching for sources of inspi-

ration or evaluating designs against existing technology. However, it is difficult to capture

what people consider is functionally similar and therefore, if measures that quantify and

compare function using the products themselves are meaningful. In this work, human

evaluations of similarity are compared to computationally determined values, shedding

light on how quantitative measures align with human perceptions of functional similarity.

Human perception of functional similarity is considered at two levels of abstraction: (1)

the high-level purpose of a product, and (2) how the product works. These human sim-

ilarity evaluations are quantified by crowdsourcing 1360 triplet ratings at each functional

abstraction and creating low-dimensional embeddings from the triplets. The triplets and

embeddings are then compared to similarities that are computed between functional mod-

els using six representative measures, including both matching measures (e.g. cosine

similarity) and network-based measures (e.g. spectral distance). The outcomes demon-

strate how levels of abstraction and the fuzzy line between “highly similar” and “somewhat

similar” products may impact human functional similarity representations and their subse-

quent alignment with computed similarity. The results inform how functional similarity can

be leveraged by designers, with applications in creativity support tools, such as those used

for design-by-analogy, or other computational methods in design that incorporate product

function.

1 INTRODUCTION

Designers often make comparisons between different ideas and assess how their designs

will meet functional requirements to solve the problem at hand. To acquire knowledge in early-

stage design, a common practice is to seek examples of, or inspiration from, existing products,

through methods such as benchmarking or searching patents [1,2]. Previous work has shown that

inspirational stimuli help improve idea generation and that function-based examples are particu-

larly useful in helping designers identify potential solutions [3–5]. Several quantitative approaches
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have been applied to determine functional similarity between products, guiding the development of

computational methods to augment designers’ capabilities in the solution exploration phase [6–8].

However, the alignment of these methods with how designers draw functional connections be-

tween products in practice (and consequently, their utility), remains to be understood. Depending

on the stage of the design process, designers may consider concepts at different levels of ab-

straction [9, 10]. While functional representations are abstractions themselves, they may vary in

level of detail. Some consist of only the core function of the product, while others consist of all

of the sub-functions that make the product work. When searching for concepts across domains,

prioritization may lie on the higher-level function of the product (here, referred to as its purpose)

to find surface dissimilar ideas. At other times, finding products with similar functional properties

might entail searching for the specific mechanisms necessary to achieve this purpose (i.e., how

it works) [11–14]. When considering function in these different ways, products that are relevant

for benchmarking, as examples, or for inspiration, may vary, motivating the need for appropriate

similarity measures. While humans may be able to adapt their consideration of functional similarity

across these abstractions, automated methods must contend with this often ambiguous notion of

similarity.

To investigate how design similarity can be assessed and utilized for the early stages of design,

the following research questions are addressed in this work:

1. Do computed measures of functional similarity accurately capture human representations of

functional similarity?

2. How does the level of abstraction impact humans’ similarity representations of product func-

tion?

Aiming to ensure that computational methods to support design are meaningful to humans,

a quantitative approach is taken to compare human conceptualization of similarity with how sim-

ilarity can be measured mathematically. Crowdsourcing methods are applied to quantify human-

determined functional similarity and explore how various quantitative measures align with the hu-

man representations. While the measures included for comparison are not comprehensive, they

are representative of measures that have been investigated in prior work or may be relevant for
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engineering design. The results show how well measures of functional similarity match humans’

perceptions of similarity and in which cases (e.g. when considering only highly similar designs vs.

a range of products or for higher vs. lower functional abstraction), leading to broader considera-

tions of how human vs. computational representations of functional similarity might be applicable

for computational design tools.

2 RELATED WORK

Prior research on the use of similarity measures in engineering design, as well as research on

human perception of similarity and its measurement are reviewed in the following section. Both

of these areas are relevant for comparing human evaluations with computational output, ensuring

that the latter is interpretable and useful to humans during design activities.

2.1 Similarity measures used in design

Obtaining repeated evaluations of design similarity from humans, through expert or crowd-

sourced assessments, is challenging and expensive, prompting effort towards finding quantitative

similarity measures for the design domain. Since design spans various tasks and contexts, it is

often desirable to adapt existing measures that have already been shown to apply across various

domains. Similarity has been assessed on different dimensions, such as form or function, and

at different phases, ranging from concepts to full products [15]. For example, visual similarity be-

tween products (similarity in form) has been investigated for the purpose of determining product

families, variants, or branding [16, 17]. In the early stages of design, however, product function

is often one of the most critical considerations [2]. Assessing similarities along the dimension of

product function poses a challenge because product function is difficult to quantify.

One way to calculate functional similarity involves using a text-based repository of domain rel-

evant information such as the patent database, which contains a large body of data on product

function. Functional similarity has been calculated using latent semantic analysis and the cosine

similarity measure on these patents for the purpose of design-by-analogy (a method where de-

signers seek to apply solutions that work for other problems to solve their problem) [6]. The results

from using this measure has been validated by indicating that its clustering of patents is sensible

to experts [18]. A functional neural network has also been used for presenting function-based
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inspirational stimuli by defining product function via relationships between parts and neighboring

parts within 3D models [19]. Another way to capture product function is through a functional dia-

gram or model, such as one developed using a standardized vocabulary [2,20,21]. A vector-based

quantitative metric has been developed to compare these functional models [7]. In addition, crit-

ical function chains have been extracted from functional models and matched in various ways to

quantify functional similarity [8, 22]. The functional model representation enables a higher level

of abstraction of a product than a patent, which may be desirable when searching for examples

during conceptual design. At the same time, functional models are not available for many products

and are often developed subjectively. To mitigate these challenges, recent research has focused

on automating functional modeling using information about product components [23,24]. This re-

search focuses on functional similarity as obtained through functional models. Similarity can be

calculated in a variety of ways across these models, yet it remains unclear whether these deter-

minations of functional similarity are meaningful. It is also notable that each measure provides a

different conceptualization of what similarity means when applied to product function. Some mea-

sures place importance on the existence (or absence) of specific sub-functions to define overall

functional similarity, while others place more importance on patterns in how sub-functions connect

to each other. These differences impact the context in which each measure can be used and indi-

cates the necessity to carefully consider how functional similarity is quantified, especially when it

is used to support design activities [25].

2.2 Quantifying how humans evaluate similarity

To assess how quantitative measures align with human mental representations, it is crucial

to capture how humans perceive similarity. Knowing the “human dimension” is important when

applying these measures within interventions or systems that are intended to augment human

processes. Humans constantly make judgements of similarity to reconcile information from the

world around them with internal mental representations. In addition, similarity is said to play a

part in how people structure conceptual knowledge [26]. Several theories have been developed

regarding human determination of similarity, incorporating effects from elements such as direc-

tionality and context [27, 28]. In the structural alignment view of similarity from psychology, there
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are three elements of alignment: structural consistency, relational focus, and systematicity. These

elements correspond to one-to-one matching, common relations in both items being compared,

and sets of relations that are interconnected by higher order relations [29]. It is difficult to untan-

gle the underlying dimensions along which people consider similarity, especially for more complex

items, and there are several approaches to tackling this challenge.

One approach to understanding why people might consider two objects to be similar is to ex-

plicitly ask them for their reasoning. For example, to evaluate how a topic modeling algorithm rep-

resents similarity compared to humans, human raters were asked to both select which documents

were more similar from a triplet as well as explain what made them similar (and the unchosen

one different) [30]. Another approach is a data-driven approach, where people are asked to make

similarity judgements and latent or explainable dimensions are uncovered directly from the re-

sults. This data-driven approach has been used in several contexts such as determining similarity

across musical artists and natural objects [26, 31]. Closely related to the approach in our work,

the data-driven approach has been utilized to create an embedding to compare human-perceived

similarities with models’ internal representations on ImageNet [32].

Within engineering design, both approaches have been used to assess design similarity for

a variety of purposes. In a study on design-by-analogy, participants were explicitly asked what

dimensions they considered important for similarity between a target and source product [33].

It was found that functional similarity dominated over form similarity. To understand whether the

structural alignment view of similarity from psychology applies in the context of design, participants

were asked to rate similarity between design concepts and explain their reasoning in another study

[34]. The results implied that feature-based responses drove similarity, in line with the element of

structural consistency from the structural alignment model.

More recently, the data-driven approach has been increasingly applied to problems in design.

Pairwise similarity judgements were crowdsourced to assess visual similarity between products,

determining that novelty assessments from a crowd can match with those made by experts [35].

Similarity judgements were also collected in the form of triplet ratings for determining design sketch

novelty and for evaluating dissimilarity between sets of ideas to spur diversity during idea gener-
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ation [36, 37]. More fine-grained search across product function specifically has been enabled by

crowdsourcing annotations from product descriptions, including both product purpose and working

mechanism as facets [14].

These data-driven methods are able to uncover human perceptions of similarity, but may be

limited to the task or context for which the data were collected. In addition, the dimensions of sim-

ilarity determined from data-driven methods may not be explanatory or easy to interpret. There-

fore, using similarity functions that have been learned from humans may not always be possible

or desirable. At the same time, even a similarity measure that is computed from products must

provide human-interpretable results to successfully supplement cognitive processes such as ana-

logical transfer. For these reasons, the determination of functional similarity is approached here

in a task-agnostic — though not domain-agnostic — way, combining a data-driven approach (col-

lecting human similarity judgements) with one that is less context-dependent (using mathematical

measures on functional diagrams).

2.3 Considerations for evaluating design similarity

Several factors may influence whether and how quantitative similarity measures, computed

on designs, can be effectively used to support human creativity in engineering design. Two are

considered here: the threshold for separating similar and dissimilar and the consideration of ideas

at varying abstraction levels during design.

The concepts of similarity, dissimilarity, and distance are often used interchangeably. Math-

ematically, distance measures can be converted to dissimilarity measures. In addition, similarity

can be converted to dissimilarity, and vice versa. However, in application, whether similarity or

dissimilarity is more important depends highly on the context. For example, in recommendation

systems broadly, while similarity is used to find the most relevant results, the notion of dissimilarity

is explored instead to add novelty and diversity to results [38]. In the domain of engineering design,

dissimilarity has been applied to developing novelty metrics for idea assessment at the conceptual

stage. To characterize novelty, these metrics emphasize how dissimilar a given concept is from

other concepts [39].

Measures of similarity also play a critical role in attempts to foster analogical innovation. Ac-
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cording to Gentner and Markman, the processes involved in comparisons of similarity and analogy

are the same [29]. Analogical distance has been shown to impact the effectiveness of examples

during concept generation, indicating that the distinction between similarity and dissimilarity is

critical in the practice of design-by-analogy [40–42]. Analogies are generally considered to be

near-field analogs (sharing surface features or existing in the same domain) or far-field analogs

(sharing few or no surface features and existing in different domains, but having some functional

similarity). As such, analogical distance encompasses similarity and dissimilarity as well as bal-

ancing the line between the two and not going “too far” [43]. Functional similarity may be utilized

in design to find both items that are highly similar and ones that are “somewhat similar.” Therefore,

in this research, comparisons of measures and human judgements are considered with respect to

both highly similar products and similarity in the product space more globally.

Another element to consider when assessing similarity between designs or products is the

abstraction level of their representations. Work in the cognitive processes behind design sug-

gests that solution search is performed through lateral and vertical transformation: moving to a

slightly different idea or moving to a more detailed version of the same idea [44]. In the context

of product function, as the level of detail available increases, the functional abstraction can de-

crease, facilitating consideration of function as how the product works instead of its higher-level

purpose [12]. Functional similarity measures have focused on lower-level representations (i.e. the

working mechanism) since very detailed information is available in patents and in full functional

models that have been developed through reverse engineering. However, designers often only

have enough information to operate at the higher level during the conceptual stages of design. In

addition, cross-domain analogies can be found through higher-level purpose even if working mech-

anisms differ [13]. Because it is often required to consider functional similarity at multiple levels of

abstraction, it is necessary to understand how any quantitative measures reflect the ways humans

can translate between the levels. This work encodes the dimension of functional abstraction to

specifically examine its influence on human representations of similarity.
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3 METHODS

Functional similarity is crowdsourced from humans and compared with similarity recovered

from applying quantitative measures directly on the products, as outlined in the following sections.

The comparisons can provide insight into how example-based design tools or computational meth-

ods might capture product functionality, making this information accessible to designers.

3.1 Product dataset

A subset of 20 consumer products (e.g. toys, consumer electronics, household devices) found

in the Design Repository hosted by Oregon State University was utilized for this work [45]. This

subset was selected to represent products with varying levels of complexity that participants would

be familiar with, as well as to ensure the availability of two consistent levels of functional specifica-

tion. A list of the products can be found in Appendix A. For each product, the repository contained

a simple functional model consisting of inputs, outputs, and a singular, main function of the prod-

uct, as well as a highly detailed functional model of how the product worked, specified according to

Hirtz et al. [21]. An example of each type of functional model is shown in Figure 1. The repository

additionally contained a product title and image.

3.2 Crowdsourcing human judgements

To capture how humans consider products to be functionally similar, similarity judgements

were crowdsourced from humans and then represented in a low-dimensional embedding space

using techniques from machine learning. These embeddings were used to quantify the relative

similarity among the set of products. This method has recently been used in engineering design

to determine the visual similarity of products as well as to determine the novelty of ideas [35, 36].

The judgements were collected in the form of triplet queries (“Is A more similar to B or to C?”).

Prior work has shown that humans can more easily and consistently answer triplets as opposed

to direct pairwise comparisons [46].

Because functional similarity may depend on the level of abstraction at which someone is

considering products, information about function was presented to participants in two ways based

on the two available types of functional models, shown in Figure 1. The information from the full

functional models (Figure 1b) was converted to text descriptions to capture essential information
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Fig. 1: Functional models at two levels of abstraction (shown for a scooter)

about how the product worked. The function as defined by its purpose was taken directly as text

from the simple functional model (Figure 1a) and only modified in a few cases for clarity. The

descriptions can be found in Appendix A. Stock images were included for products that were

missing images in the Design Repository and product titles were modified to represent the generic

versions of the product. Each triplet presented to participants contained the following information

about each product: a title, image, and description of the product function of either type. An

example triplet is shown in Figure 2.

Although images were provided to aid participants in understanding what the products were,

they were instructed to judge similarity along the dimension of function and not form. The par-

ticipants were instructed to consider the overall purpose of the product when presented with the

shorter descriptions and to consider the way in which the product worked when presented with the
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Fig. 2: Example of a triplet query. The function description text displayed under the three images
were descriptions from one of the two levels of abstraction (detailed in Appendix A). Here, the
higher abstraction is shown.

longer description. Each participant was provided with a subset of triplets (randomized across all

possible triplets) and made judgements on this same subset of triplets twice, once presented with

the shorter descriptions and once presented with the longer description. The order of the triplets

was randomized across the two abstraction levels.

After approval from an Institutional Review Board, data was collected from a total of 69 partic-

ipants. Data from one participant was removed, as they did not follow instructions. The included

participants consisted of 42 undergraduate students, 16 graduate students, and 10 others (in-

cluding working professionals). Among the participants were 50 who identified as male, 17 who

identified as female, and 1 who preferred not to say. A majority of participants were pursuing,

or had graduated with, a mechanical engineering degree, indicating a level of domain expertise.

24 of the participants indicated that they had greater than 4 years of engineering/design experi-

ence through courses, work, or extracurricular activities. 36 of the participants were shown the

longer, lower-abstraction descriptions first, while 32 were shown the shorter, higher-abstraction

descriptions first.

A total of 2720 triplet ratings were collected from the participants, who each provided 40 rat-

ings. Half of each set of ratings (1360 triplets) contained information about each level of functional

abstraction. Therefore, each set of triplets collected consisted of 42 percent of the total possible

triplets (3240 triplets). Previous applications of the low-dimensional embedding techniques con-
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sidered here use 20 percent of triplets [47, 48]. Additionally, prior work that incorporates the full

triplet set found that using 30 percent of the triplet set was sufficient and robust to a small number

of false ratings [36].

3.3 Generating an embedding space for human judgements

Once the triplets were collected, they were mapped to a low-dimensional space. The data

embeddings can be constructed by using the triplets as constraints to where points (in this case,

products) are placed within the n-dimensional space. One machine learning method to do this is

t-Distributed Stochastic Triplet Embedding (t-STE). This method defines a probability density dis-

tribution (a heavy-tailed kernel) and maximizes these probabilities with respect to the embedding

points so that a triplet is satisfied. Additionally, the maximization ensures that similar points are

collapsed while dissimilar points kept apart by triplets are repelled [48]. Other commonly used

embedding methods include Generalized Non-metric Multidimensional Scaling (GNMDS), Crowd

Kernel Learning (CKL), and Stochastic Triplet Embedding (STE) [46–48]. GNMDS and t-STE have

been explicitly applied to work in the design domain [36, 37]. In this work, t-STE was chosen as

the embedding method, due to its ability to ensure similar points are closer together and dissimilar

points are farther apart, without violating any constraints [48]. Preliminary analyses demonstrated

that selecting t-STE as the embedding method (as opposed to one of the aforementioned tech-

niques) did not significantly affect the results.

To address partial triplet collection and the aggregation of triplet ratings from across the popu-

lation of participants, two measures, adapted from prior work, were used to determine the quality

of the embedding: distance error and triplet generalization error. Distance error refers to the mean

squared error between the the normalized Euclidean distances derived from the final embedding

and an embedding created with consecutively fewer triplets [36]. This measure was used to de-

termine how much the embedding changes with the addition of new triplets to ensure that there

are enough triplets for convergence. Triplet generalization error is calculated by holding out a set

of triplets, calculating the embedding, and then determining whether the calculated embedding

satisfies the triplets that were held out [48]. This measure was used to assess how successfully

the methods could satisfy triplets that were not provided.
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Finally, the dimensionality hyperparameter of the t-STE embedding was considered when

comparing to computed measures in case two dimensions did not best represent the human-

determined functional similarity embedding (though all of the embedding techniques have been

used to represent human judgements from other domains in two dimensions). This hyperparame-

ter was alternately set to thirteen, found by creating the embedding with an increasing number of

dimensions and determining the minimum number of dimensions at which the embedding’s cost

value converged. Once the embedding was created from triplet ratings, the Euclidean distances

between the points were calculated, range normalized, and converted to a pairwise similarity ma-

trix.

3.4 Measuring similarity directly from products

3.4.1 Computing pairwise similarity matrices from functional models

After the human conceptualization of function was quantified, the next step was to compare

this to how quantitative measures determined functional similarity. To do this, the full, lower-level

functional models (Figure 1b) for the same set of products were represented in a mathematical

space as binary matrices, specified using 21 functions and 19 flows (as defined by the functional

basis framework). Within this framework, a 1 was used for the existence of a specific function in

the product and a 0 was used for the absence of a specific function in the product [21].

The quantitative measures of similarity used were those considered extensively in prior work by

the authors [25]: simple matching coefficient, Jaccard similarity, cosine similarity, spectral distance

[49], NetSimile [50], and DeltaCon [51]. There are many possible ways to measure similarity and

not all were included here, but the six measures represent different characterizations of similarity

when applied to functional representations of products. The measures range from those that are

easily interpretable to those that are not. In addition, although the measures represent more

general formulations and have been applied across several domains, efforts were made to select

measures that were the most meaningful for the context of engineering design. For example,

versions of cosine similarity and a matching measure much like the simple matching coefficient or

Jaccard similarity have been applied to engineering design [6–8]. More details on these measures

specifically applied to functional models can be found in our previous work [25] as well as in the
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summary presented in Table 1. Methods requiring significant training data such as neural networks

were not considered, though similarity embeddings from such networks could be compared to the

“human” embedding generated in this work if similar products are included.

The SMC, Jaccard, and cosine measures involve variations of matching the existence of fea-

tures (in this case, functions or flows) across the products being compared. The spectral, Net-

Simile, and DeltaCon measures involve modeling the products as networks and then comparing

the network structure in various ways. For example, the spectral measure incorporates informa-

tion node degree, which refers to the number of sub-functions operating on a specific flow or a

sub-function operating on a number of flows. This could represent the relative importance of spe-

cific functions and flows within a functional model. The two different types of measures, represent

possible links to one-to-one matching and relational comparison, both aspects of the structural

alignment model of how humans determine similarity [29].

Table 1: Summary of similarity measures used for comparison against human judgements. A
description of how the measure works and the general measure type is provided, though further
details on the use of these measures in the context of calculating similarity between functional
models can be found in our prior work [25].

Measure Definition Type

SMC The intersection over the union of sample sets, including
mutual absences and presences

Matching

Jaccard The intersection over the union of sample sets with only
mutual presences

Matching

Cosine Normalized dot product of vectors Matching

Spectral Distance between normalized Laplacian (degree matrix
minus adjacency matrix) of graphs

Network

NetSimile Distance between aggregated feature (e.g. clustering co-
efficient, node neighbors, etc.) vectors of graphs

Network

DeltaCon Differences in corresponding node affinities (influence of
one node on another) of graphs

Network

The measures were calculated on the product function matrices using the SciPy, NetworkX

[52], and NetComp [49] libraries in Python to obtain pairwise comparisons. These pairwise com-

parisons were range normalized and converted to similarities if the original form was a distance or
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dissimilarity. Therefore, all relative comparisons were scores between 0 and 1, with 1 representing

the highest similarity (only for a product compared to itself) and 0 representing the lowest similarity.

3.4.2 Generating triplets from computed similarity

The pairwise similarities calculated using functional models were converted into triplet form

for direct comparison with the triplets collected from participants. Triplets were generated from

the pairwise comparison matrices from any of the similarity measures. Given products A, B, and

C, if the pairwise similarity of A and B was greater than that of A and C, the generated triplet for

the triplet query (”Is A more similar to B or to C?”) was “A is more similar to B than to C.” These

generated triplets were found for all possible triplet combinations since the full pairwise matrix is

available from computed similarities. If there were ties between the similarity of A and B and A

and C, as is possible with measures such as the Jaccard measure, the more similar product was

selected randomly.

3.5 Comparing human judgements with computed similarity matrices

Creating an embedding from the crowdsourced data allows comparisons of functional simi-

larity at the level of specific products without the need to collect the full set of triplets. This is

important since the complete set of triplets scales up rapidly as the number of products increases.

However, to address the noise introduced to the human evaluations by the process of learning

the embedding, the original crowdsourced triplets were used as another representation of the hu-

man perception of functional similarity. Thus, the crowdsourced and computational results were

compared in the following two ways to investigate the agreement between human and computa-

tional similarity assessment: (1) by using pairwise similarity matrices from the human embedding

vs. pairwise similarity matrices computed from similarity measures and (2) by using the triplets

collected from humans vs. triplets induced by computed similarity matrices.

3.5.1 Comparison of full embeddings via correlation of pairwise similarity matrices

After the creation of a human embedding, functional similarity was assessed relative to all

other products in the considered set of products. Typically, these relative rankings are compared

using correlation statistics, such as Kendall’s τ (useful for rankings with ties) or Spearman’s ρ, as
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has been done in representational similarity analysis [53]. To determine an overall comparison

between each human embedding and the results from each similarity measure, Kendall’s τ was

computed between the upper triangular matrices of the two pairwise matrices (human and com-

puted). This rank correlation is interpreted as the difference in probability that ranks are in the

same order vs. in different order, across the rankings being compared.

3.5.2 Matching triplet ratings

Matching the triplets collected from participants with the triplets generated from each similarity

measure allows comparison without necessarily relying on the quality of the learned embedding.

This matching was determined by using the intersection between each participant’s answered

triplets – a subset of all possible triplets – and the generated triplets (a triplet only matches if the

exact order is the same), divided by the number of triplet queries answered by the participant (20,

for this study). Therefore, the measure allows for assessment of how well quantitative similarity as-

sessments are matching humans generally, as well as between specific measures and abstraction

levels.

3.5.3 Comparison of product-level functional similarity via normalized discounted cumulative gain

Finally, to look more closely at the level of individual products, the comparison of human and

computational output was formulated as a search problem: a product was selected as if it was

the input of a search and all other products were ranked relative to that product. Normalized

discounted cumulative gain (NDCG), often used to assess recommender systems, was adapted

from the field of information retrieval [54]. NDCG can be used to compare rankings to a “ground

truth,” given relevance scores, with the higher ranks having more importance than lower ranks.

The discounted cumulative gain (DCG) can be found by using a logarithmic discount based on

the rank position (i is the rank position, reli is the relevance at rank position i, and n is the total

number of ranks) as following

DCG =
n∑

i=1

reli
log2(i+ 1)

, (1a)
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after which it must be normalized by the ideal discounted cumulative gain (IDCG). The IDCG refers

to the value of DCG when the list is sorted in order of relevance so that the highest rank has the

highest relevance [54].

nDCG =
DCG

IDCG
(1b)

In this case, the crowdsourced human rankings were considered to be the “ground truth” and

each numerical rank from the crowdsourced ranking was used as a relevance score. This was

used to calculated the IDCG. Then, the DCG was calculated for the ranking of the , to compare

between the human and computational measure (e.g. cosine similarity) being compared. Once

again, the numerical ranks were used as a relevance score.

Furthermore, when using relative pairwise comparisons, the comparisons must be made using

rankings instead of absolute scores since the distribution of values generated across the different

similarity measures varies [25]. However, converting to rankings leads to loss of information about

whether a product or set of products in the ranking are significantly farther away overall (i.e. the

global structure of the product space). In other words, the individual rankings might include prod-

ucts that have very little or no relevance to each other. To probe whether alignment between

measures and humans is driven by products that are considered highly similar or by the overall

similarity space, thresholds were explored to try to separate relevant products from non-relevant

products within the entire product space. The thresholds were based on similarity above a per-

centile, using the entire pairwise score matrix and products below the threshold would be given a

relevance of 0 when appearing in any ranking. At the individual product level, a product could have

as few as 0 products or as many as 9 other products considered to be relevant in its ranking. If the

rankings by humans and a quantitative measure were exactly the same, the NDCG would return

a value of 1. NDCG was calculated using the Scikit-learn library in Python. Figure 3 summarizes

the steps taken to compare human evaluations with the calculated similarities.
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Fig. 3: Sequence of steps taken to compare human evaluations of functional similarity with cal-
culated functional similarity. The comparisons are made in two ways: using pairwise similarity
matrices and rankings (steps 3-4 and 2-3 respectively) and using triplets (steps 1 and 4 respec-
tively).
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4 RESULTS

Similarity determined from crowdsourced human data is compared to the calculated similarity

scores using the methods outlined in Section 3 and considering levels of abstraction. First, the

human representation of product function similarity is quantified at both the higher- and lower-

level abstraction (i.e. the product’s purpose vs. the product’s working mechanism) into a low-

dimensional embedding space through t-STE. Other methods for creating the embedding are

compared to verify the quality of using the t-STE embedding method. Next, both the human

embeddings and raw triplets are compared across the lower and higher abstraction to investigate

the effect of the functional abstraction on participants’ representation of functional similarity. Then,

the crowdsourced and computational results are compared in both forms, across abstraction lev-

els. Finally, more qualitative investigations are conducted at the level of individual products to

determine if differences appear based on the context of use for the similarity measure.

4.1 Quantifying human perception of functional similarity in an embedding space

The collected triplets at each abstraction level are used to create a low-dimension embedding

of the product space using t-STE. Figure 4 provides a visualization of which products were consid-

ered functionally similar by participants under the perspective of function as a product’s working

mechanism in 2D. A similar embedding is created for the higher abstraction level (function as a

product’s purpose). Before using the pairwise similarity matrix derived from Figure 4 in further

analysis, some steps are taken to ensure that the generated embedding provided a satisfactory

representation of the human data.

Creation of the embedding is replicated using the three other common triplet embedding meth-

ods (GNMDS, CKL, and STE). For all of the methods, triplet generalization error and distance error

are calculated using fractions of the collected triplets to the full number of collected triplets. As

shown in Figure 5a, the GNMDS, STE, and t-STE methods demonstrate a level of convergence

before the full number of collected triplets are included. The t-STE method has the lowest triplet

generalization error by a small margin when incorporating all of the collected triplets. Even using

the full number of collected triplets, about 30 percent of the triplet constraints are not satisfied in

the embedding. The occurrence of unsatisfied constraints is in line with previous experiments us-
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Fig. 4: Two-dimensional embedding constructed with t-STE from crowdsourced triplets (based on
how the products work)

ing triplet embedding methods where not all of the triplet constraints being satisfied [36, 48]. This

can be attributed to inconsistency across the crowd among other reasons. Using distance error, as

shown in Figure 5b, GNMDS, STE, and t-STE demonstrate a level of convergence in embeddings

at about 50 percent of collected triplets. At this point, the similarity scores change only slightly in

comparison to the scores from the final embedding. CKL does not demonstrate convergence in

either case and therefore, is not considered further.

Finally, the median rank correlation coefficient (Kendall’s τ ) of the product rankings is calcu-

lated across the methods, as shown in Figure 5c, to determine if there are differences in the

rankings (i.e. relative similarities calculated from the 2D space) when using a specific triplet em-

bedding method. There is a strong correlation between rankings across methods, demonstrating

that in addition to performing similarly in terms of errors in satisfying triplet constraints, the differ-

ent methods only have a small effect on the resulting pairwise similarities. A closer look at the 2D

embedding in Figure 4 verifies that products that were expected to be close to each other in the

2D embedding space (e.g. the two vise grips, located in the upper middle area) are actually close

to each other using t-STE.
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Fig. 5: Triplet generalization error and distance error verify that the t-STE embedding is not signif-
icantly changing with the addition of new triplets after a point. The embedding technique does not
significantly impact similarity values derived from the triplet embeddings.

4.2 Comparing human perception of functional similarity at different levels of abstraction

To probe if the participants’ conception of functional similarity (for this set of products) is af-

fected by changing abstraction level, defined here as the product’s purpose vs. working mecha-

nism, the learned embeddings for the two levels of abstraction are compared. The rank correlation

of the upper triangular portion of the pairwise similarity matrix from the human-determined em-

beddings (considering two dimensionality hyperparameters), is shown in Table 2, displaying only

a relatively high correlation across the two levels of abstraction (for τ = 0.54, there is a positive

correlation between 77 percent of all possible pairs of ranks being compared). This reflects that

the abstraction seems to affect human consideration of functional similarity sometimes. Rankings

of each product’s similarity relative to all other products are found to determine which products

might be driving any differences. These rank correlations for each product across the levels of ab-

straction are also displayed in Table 2. The correlations range from weaker (e.g. the water pump)

to stronger (e.g. the two types of vise grips) in comparison to the full embeddings, demonstrating

that for some of the products, the rankings match regardless of how function is presented, while

for others, the rankings differ significantly. Therefore, a significant divergence in how humans con-

sider similarity when framing function around a product’s purpose vs. working mechanism exists,

but only for a smaller subset of products.
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Table 2: Rank correlation coefficient (Kendall’s τ ) for full embeddings and each product when com-
paring human-evaluated similarities across functional abstraction levels. Shaded rows indicate the
subset of products with a rank correlation coefficient below the median (0.585).

Rank Corr. Coeff. p-value

Full embeddings

2 dimensions 0.54 <0.01

13 dimensions 0.38 <0.01

Product

Toy Plane 0.31 0.07

Alcohol Detector 0.64 <0.01

All-in-one Printer 0.50 <0.01

Bike 0.65 <0.01

Blower/Vacuum 0.22 0.21

CD Player 0.68 <0.01

Drink Cooler 0.60 <0.01

DVD Player 0.72 <0.01

Nerf Gun 0.40 0.02

Game Controller 0.36 0.03

Power Razor 0.56 <0.01

Stapler 0.58 <0.01

Hulk Hands 0.33 0.05

Lawn Mower 0.42 0.01

Quick Grip Vise 0.73 <0.01

Scooter 0.65 <0.01

VHS Player 0.67 <0.01

Vise Grip 0.78 <0.01

Water Pump 0.16 0.37

Zip Disk Drive 0.59 <0.01
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Since the participants were presented with the same 20 triplets (in a randomized order) for

each level of abstraction, each participant’s ratings are compared across levels to see if the triplets

were answered in the same way. Participants answer a mean of 69 percent (SD: 14%, min:

35%, max: 95%) of the triplets in the same way across both conditions, again supporting that

participants only sometimes answer differently when presented with the two types of function

information and that it highly depends on the type of product.

4.3 Human judgements vs. quantitative measures using triplets and embeddings

Comparisons between human similarity judgements of product function and functional simi-

larity computed through similarity measures are made using both the learned embeddings and

triplets.

4.3.1 Matching collected triplets with generated triplets across abstraction level

The percent of human triplets that match with generated triplets at the lower abstraction is 58

percent as an average across all measures, indicating that the measures and human judgements

agree for approximately 12 of the 20 triplets a participant provides. Matching between human and

generated triplets at the higher abstraction level averages 55 percent. Matching between human

and computed triplets, across all measures, is statistically significantly different for the lower ab-

straction and the higher abstraction according to a dependent t-test (t(5)=3.45, p=0.02). The result

indicates that measures (at least those considered here) generally have improved agreement with

human judgements at the lower abstraction level than at the higher abstraction level. Comparing

individual measures, at the lower abstraction level (working mechanism), a repeated measures

ANOVA does not show a statistically significant effect of the measure type on the percentage of

matching triplets. However, at the higher abstraction level (purpose), a repeated measures ANOVA

does show a statistically significant effect between measures(F(5, 335)=6.26, p<<0.01). A post-

hoc analysis with a Tukey HSD correction at this abstraction level shows a significant effect in

comparisons involving the spectral measure — the spectral measure with SMC (p=0.01), spectral

measure with Jaccard similarity (p=0.03), and spectral measure with cosine similarity (p=0.02).

The spectral measure therefore demonstrates higher alignment with the collected triplet ratings

than any of the matching-based similarity measures when considering the higher level of abstrac-
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tion, matching 59 percent of triplets from participants on average (on par with matching at a lower

abstraction generally). In summary, none of the measures match human ratings very well, but

they match human ratings at a lower abstraction better than at the higher abstraction level. One

exception to this is when using the spectral measure, which compares functional models based on

their topological similarity regardless of node labels (i.e. the specific sub-functions). The results

support that network-based measures may be more useful for capturing what people consider to

be functional similarity at a higher abstraction level.

4.3.2 Correlations between pairwise similarity matrices of human-determined embeddings and

computed measures across abstraction level

The rank correlation of the upper triangular portion of each human-determined embedding’s

pairwise matrix and each measure’s pairwise matrix is shown in Table 3, demonstrating an overall

comparison of human and computational representations of functional similarity. Interpretation

of the correlation values themselves indicates that at maximum (τ=0.30) and minimum (τ=0.05),

there is a positive correlation for 65 and 53 percent, respectively, of all ranks pairs being compared

between the results from a similarity measure vs. a human embedding. In general, the correla-

tion values are higher for the lower abstraction level than for the higher abstraction level, again

supporting that the measures are better aligned with humans at the lower abstraction than at the

higher abstraction.

Looking more closely at the specific measures that align better, at the lower abstraction, the top

two measures with the highest correlation are the NetSimile and Jaccard measures. At the higher

abstraction, the two measures that have the highest correlation regardless of the embedding di-

mensionality are the spectral and NetSimile measures. For the higher abstraction embedding in

two dimensions, the measure with the highest correlation (the spectral measure) corresponds to

the results found by just using the raw triplets, indicating that perhaps the two dimensional embed-

ding is sufficient to capture the human signal.

4.4 Product-level comparison considering similar vs. “highly similar”

This section examines more closely how quantitative measures compare to the human-determined

similarity when considering highly similar products vs. the entire product space. In this case, only
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Table 3: Rank correlation of similarity matrices from human embedding with computed matrices.
The shaded cells indicate the measure that has the highest correlation with the human embedding
at the given abstraction and dimensionality. * and ** indicate significance at the 0.05 and 0.01
thresholds respectively.

Human Embedding

Abstraction Lower Higher

Dimensionality 2 13 2 13

SMC 0.12** 0.18** 0.10* 0.08

Jaccard 0.23** 0.27** 0.10* 0.07

Cosine 0.20** 0.26** 0.09 0.05

Spectral 0.20** 0.23** 0.21** 0.19**

NetSimile 0.26** 0.30** 0.18** 0.20**

DeltaCon 0.11** 0.17** 0.11* 0.11*

the subset of products where the functional abstraction appears to affect functional similarity rating

(a low correlation between rankings across abstraction as shown by the shaded rows in Table 2) is

considered. As described in Section 3, each product has a ranking for how similar other products

are to it. When thresholds are applied, the NDCG measure prioritizes alignment between humans

and measures along the highly similar products (those passing the threshold). It should be noted

that the threshold is applied across all product comparisons, but the NDCG is calculated indepen-

dently for each product (a row or column in the similarity matrix). This means that a product can

have any number of products that are functionally “similar enough” to it (including zero, as may be

the case where the similarity threshold is very high)

Figure 6 shows the NDCG of each measure given reference rankings from the two-dimensional

human-sourced embedding at each abstraction level. The NDCG measure reveals the similar in-

formation to both the triplet matching and the embedding correlations when there are no thresholds

to similarity applied — at the lower abstraction, the measures appear to perform relatively simi-

larly, while at the higher abstraction the spectral and NetSimile measures have better alignment

with human ratings. When no thresholds are applied, the measures must perform well across

all levels of similarity (not just highly similar cases). However, using the NDCG allows us to see

the qualitative changes in which measure performs the best when only looking at highly func-
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tionally similar products. For example, at the lower abstraction level, considering only the most

similar products, alignment between measures and human-determined rankings becomes highly

dependent on the product, as demonstrated by the larger ranges of NDCG values. Then, at the

higher level of abstraction, the median of the spectral measure is notably higher than the other

measures when the threshold is at its highest, indicating that it aligns more closely with the hu-

man judgements regarding the highly functionally similar products. While these more fine-grained

investigations cannot lead to definite conclusions, together with the other results they provide a

clear indication of how similarity measures compare to human evaluations. The similarity mea-

sures align similarly with human perception of functional similarity (but not perfectly) unless it is

important to find highly functionally similar products or operate at a specific level of abstraction. In

those cases, differences among the measures arise, and some align with human representations

better than others, often also depending on the specific product type.
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Fig. 6: NDCG (comparing product-level similarity rankings from measures to “reference” product-
level human similarity rankings) across levels of abstraction with and without a similarity threshold
applied. The overall NDCG drops when a similarity thresholds are applied because fewer prod-
ucts have relevance greater than 0. Notably, the addition of thresholds reveals the product-level
differences across individual measures in alignment with human rankings.
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5 DISCUSSION

During design, it may be necessary to specify similarity along several dimensions to help facili-

tate connections across domains and move beyond surface-level similarities. However, it is difficult

to incorporate this type of flexibility into measures of similarity that might be useful for design au-

tomation or support. Furthermore, to apply computational methods to design, it is important to

understand when human decisions might be in conflict (or alignment) with computational support

tools. In this work, these questions are explored in the context of functional similarity, a dimension

of similarity particularly important for design, by directly comparing results from human judge-

ments to those calculated from functional models. In addition, factors that lead to these conflicts,

such as a threshold for similarity or different levels of abstraction, are studied. There are several

key findings. First, varying abstraction level affects what people consider to be similar product

functions to an extent. The quantitative measures considered here have a limited ability to capture

the human representation of function, especially at the higher level of abstraction. We also find

that no similarity measure consistently matches best with human ratings across both abstraction

levels. Finally, differences between the individual measures’ ability to align with human perception

of functional similarity appear to depend on whether it is desirable that they align on what is highly

similar vs. progressively less similar products. This is pertinent for analogical design, where it may

be desirable to search beyond the space of highly similar products. These results are expanded

upon further below.

5.1 Computed similarity may fail to capture human representations of functional similarity

In this work, crowdsourcing and triplet embedding is used to quantify how people consider

products to be functionally similar. The human similarity judgement embedding is created as an

aggregate across the participant population though in reality, individuals may perceive similarity

in different ways, even when instructions specify consideration along a certain dimension. While

many of the limitations to using embeddings mentioned by Ahmed et al. [36] still apply, the method

provides a way to compare these judgements with what can be directly computed from functional

representations of products without using a specific design task. The correlations between results

from any of the six computed similarity measures and the human embeddings seem to indicate
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that the measures are not capturing human perception of functional similarity. This discrepancy

is more pronounced when humans consider function at a higher abstraction, for almost all of the

measures. Related work comparing human embeddings with the low-dimensional embeddings

from image classification models (deep learning models as opposed to the quantitative measures

here) also finds correlations on the order of those found here (the highest correlation is 0.30) [32].

This raises questions about whether the representations of function that these similarity measures

can capture are sufficient for design applications, even if they do not align strictly with human

representations. For instance, prior work indicates that people may use a structural alignment

approach in similarity, and specifically notes that people tend to match common features across

items, an attribute that is shared by the Jaccard and cosine similarity measure [34]. However, when

considering functional similarity, unlike the measures applied to functional models, humans cannot

easily match the numerous sub-functions, instead making a more holistic assessment. Therefore,

at the lower abstraction, using results from the considered similarity measures may provide them

with information they have missed. On the other hand, measures must be used carefully if applied

when humans are operating at the higher abstraction level, as only the network-based measures

demonstrate even a small amount of alignment with humans, which may not be enough.

5.2 Humans conceptualize functional similarity at different levels of abstraction and simi-

larity measures may have limited ability to reflect this difference

The results indicate that the abstraction level can affect which products humans consider to be

most functionally similar. Although it was expected that the embeddings would look significantly

different for almost all products when considering the different levels of abstraction, it turns out

that a smaller subset of products may drive the differences. An overlay of maps of the subset of

products with low rank correlations (below the median) is shown in Figure 7.

From this map, a specific example of the effect of abstraction is in the trio of products including

the Hulk Hands, Toy Plane, and Nerf Gun. The Hulk Hands product and the Toy Plane product

are closer in the higher abstraction function map (their functions are described as providing sound

and motion for entertainment respectively), while the Toy Plane product moves away from the Hulk

Hands product and closer to the Nerf Gun product in the lower abstraction function map. This can
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Fig. 7: Two-dimensional embeddings for the subset of products with low rank correlation coeffi-
cients across abstraction levels (visualized using Procrustes analysis in SciPy). Some products
are brought closer together or pushed farther apart from each other depending on the level of
functional abstraction considered.

potentially be explained by the shared pneumatic mechanism between the Toy Plane and Nerf Gun

that is not considered for its overall purpose. It is noted that the function information presented to

participants for the lower level of abstraction was summarized from the full functional model and

therefore, not necessarily complete. By investigating a larger variety of products, it may be possible

to understand the types of products for which abstraction level affects consideration of functional

similarity and why. In addition, Chaudhari et al. [55] point out that how people view similarity is

dynamic. This is an important consideration when looking at levels of abstraction, where the level

of expertise may play a role in the ability to draw more abstract functional connections.

When comparing the human judgements with quantitative measures directly computed on

products and including the factor of abstraction, there is a discrepancy in access to information:

humans were provided with the higher-level function, while the measures still operated on the full,

lower-level functional model. This discrepancy can be addressed by using pruning rules on the

functional models to remove unimportant information as done by Caldwell and Mocko [12]. How-

ever, it may also be desirable for a computed measure to be able to infer the higher abstraction
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from lower-level attributes rather have to directly provide both levels of abstraction. From this per-

spective, it is notable that the measures that align the best with human judgements at the higher

abstraction, both when using the embeddings and when directly matching triplets, are network-

based (particularly the spectral network similarity measure aligning significantly better with hu-

mans than the three other feature-matching-type measures: SMC, Jaccard, and cosine). Thus,

in comparison to other types of measures, a network-based measure has the potential to allow

access to the higher abstraction without the effort needed to directly learn the latent space with

large amounts of data. This might encode the aspect of how humans consider relations and sets

of relations within items when making comparisons as proposed by Gentner and Markman [29].

5.3 The ways similarity measures align with human judgements may differ when consid-

ering similar vs. “highly similar” products

It appears that the way people consider highly similar items cannot be captured in the same

way as how people consider similarity more broadly. It is possible that the embedding does not

accurately capture how people think of the more dissimilar products, as they are specifically asked

to select the more similar product in the triplet. Additionally, there are limitations in the thresholding

approach due to the small number of products considered, meaning that certain products may not

have had items within the dataset that were similar at all. Further investigation into similarity

thresholds may correspond to finding products that are “far” but not “too far” in terms of analogical

distance. When deciding to utilize a measure to search for far-field sources of inspiration, it is

desirable to choose a measure that does not have the highest alignment with human similarity

judgements to provide unexpected results, as indicated by Fu et al. [18]. However, if it is important

for the similarity measures to return functionally similar products in the exact way that humans

are considering functional similarity, the results indicate that none of the measures considered

here can be recommended. At the same time, since humans can adapt their notion of similarity

to search for connections between products, their conception of function and functional similarity

might change if they are presented with the output from the similarity measures instead of asked

to make their judgements independently. Therefore, the context dependence of human similarity

judgements could possibly nudge alignment between humans and similarity measures closer than
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what is found in this study.

5.4 Implications for design

Research finds cognitive processes such as long-term memory retrieval, semantic/associative

processes, and visual perception, to be relevant during design from both a design-as-search and

a design-as-exploration perspective. In design practice, limitations of these cognitive processes

might be addressed through automation [56]. It is possible, for instance, that the ability of humans

to view similarity dynamically and measures to compute similarity in a structured way can com-

plement each other. If humans assess similarity based on products that they have encountered

before instead of only the set of products they were presented, expertise may affect what humans

considered functionally similar. Those with more experience or higher expertise may have encoun-

tered more products to which they can compare. While the measures considered here can only

compare relative to a set of products they have access to, this set may also be larger than what a

person can remember. Additionally, in cases where functional connections between products are

not very clear (perhaps the products are quite dissimilar), humans may resort to other dimensions

to make their decisions, while computational measures can continue to make these judgements

without this limitation. In such a case, perhaps humans should not be used as the standard to

which functional similarity measures are held and the divergence can be exploited. Results from

recent work on ratings of design concept novelty have also hinted at this point, finding subsets of

highly-rated designs to differ across comparing human and computational evaluations [57]. Thus,

future work might investigate ways to determine the effectiveness of combining human evaluations

with quantitative evaluations in design more broadly, even beyond functional similarity.

While there are several ways to capture product function (e.g. functional models, descriptions,

patents) in engineering design, leveraging this knowledge for creative transfer of ideas across

domains will require methods to assist designers in searching through a design space along the

dimension of function [6, 33]. For these methods to be adopted in design practice, functional

similarity must be defined in a way that proves useful to humans. However, the findings in this

study provokes consideration of whether this necessarily means computational and human simi-

larity should be aligned. In this study, no considered measure demonstrated very close alignment
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with human perception of functional similarity. Only one measure (NetSimile) demonstrated some

robustness to considerations like abstraction. If computational output must be highly in line with

humans’ representations, more adaptive ways of determining functional similarity are required.

On the other hand, further investigation could reveal measures that transcend the limitations and

instead augment human similarity perception. Then, if a designer could flexibly retrieve products

or ideas that were functionally similar at the right level of abstraction, and at the right “amount” of

similar, perhaps they could make better use of the vast number of existing products to inspire new

ideas.

6 CONCLUSION

In this paper, human similarity judgements of functional similarity, using a set of consumer

products, were crowdsourced and a triplet embedding method was applied to quantify these hu-

man judgments in a low-dimensional embedding space. This representation provides insight into

the alignment between how humans view functional similarity and how these functional similarities

can be directly computed from the products. The results indicate that human and computational

representations of functional similarity diverge and are affected by different ways that humans

might consider similarity. The way highly similar products are considered by humans compared to

“somewhat similar” products may not be captured by these existing measures, affecting applica-

tions such as design-by-analogy, where analogical distance must be controlled. Additionally, for

some products, the level of abstraction can influence whether human judgements align with com-

putational measures. Factoring in higher functional abstraction, network-based measures that

account for relations between elements may be appropriate. These types of measures can poten-

tially be used to represent how humans abstract function when it is not possible to directly learn

a measure from a large quantity of data collected from humans. Further work is needed to bet-

ter define functional similarity in a way that is interpretable and useful to humans across different

abstraction levels.

ACKNOWLEDGEMENTS

This work has been supported by the Regents of the University of California. The findings pre-

sented in this work represent the views of the authors and not necessarily those of the sponsors.

Goucher-Lambert, MD-21-1367 32



Journal of Mechanical Design

We would like to thank the authors of [48] for making their code available. A preliminary version of

this study was presented for ASME IDETC 2021 [58]. We thank the reviewers for their constructive

comments.

REFERENCES

[1] Christensen, B. T., and Schunn, C. D., 2007. “The relationship of analogical distance to

analogical function and preinventive structure: The case of engineering design”. Memory &

Cognition, 35(1), Jan., pp. 29–38.

[2] Ulrich, K. T., and Eppinger, S. D., 2004. Product Design and Development. McGraw-Hill/Irwin.

[3] Goucher-Lambert, K., Moss, J., and Cagan, J., 2019. “A neuroimaging investigation of design

ideation with and without inspirational stimuli—understanding the meaning of near and far

stimuli”. Design Studies, 60, Jan., pp. 1–38.

[4] Linsey, J. S., Laux, J., Clauss, E. F., Wood, K. L., and Markman, A. B., 2007. “Effects

of Analogous Product Representation on Design-By-Analogy”. In DS 42: Proceedings of

ICED 2007, the 16th International Conference on Engineering Design, Paris, France, 28.-

31.07.2007, pp. 337–338 (exec. Summ.), full paper no. DS42 P 477.

[5] Linsey, J. S., Wood, K. L., and Markman, A. B., 2008/ed. “Modality and representation in

analogy”. AI EDAM, 22(2), pp. 85–100.

[6] Fu, K., Murphy, J., Yang, M., Otto, K., Jensen, D., and Wood, K., 2015. “Design-by-analogy:

Experimental evaluation of a functional analogy search methodology for concept generation

improvement”. Research in Engineering Design, 26(1), Jan., pp. 77–95.

[7] McAdams, D. A., and Wood, K. L., 2002. “A Quantitative Similarity Metric for Design-by-

Analogy”. Journal of Mechanical Design, 124(2), June, pp. 173–182.

[8] Turner, C., and Linsey, J., 2016. “Analogies from Function, Flow and Performance Metrics”. In

Workshop Proceedings from the 24th International Conference on Case Based Reasoning.

[9] Taylor, L. E., and Henderson, M. R., 1994. “The Roles of Features and Abstraction in Mechan-

ical Design”. In ASME 1994 Design Technical Conferences Collocated with the ASME 1994

International Computers in Engineering Conference and Exhibition and the ASME 1994 8th

Annual Database Symposium, American Society of Mechanical Engineers Digital Collection,

Goucher-Lambert, MD-21-1367 33



Journal of Mechanical Design

pp. 131–140.

[10] Maier, J. F., Eckert, C. M., and Clarkson, P. J., 2017/ed. “Model granularity in engineering

design – concepts and framework”. Design Science, 3.

[11] Caldwell, B. W., Thomas, J. E., Sen, C., Mocko, G. M., and Summers, J. D., 2012. “The Ef-

fects of Language and Pruning on Function Structure Interpretability”. Journal of Mechanical

Design, 134(6), Apr.

[12] Caldwell, B. W., and Mocko, G. M., 2011. “Functional Similarity at Varying Levels of Abstrac-

tion”. In ASME 2010 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference, American Society of Mechanical Engineers Dig-

ital Collection, pp. 431–441.

[13] Kittur, A., Yu, L., Hope, T., Chan, J., Lifshitz-Assaf, H., Gilon, K., Ng, F., Kraut, R. E., and

Shahaf, D., 2019. “Scaling up analogical innovation with crowds and AI”. Proceedings of the

National Academy of Sciences, 116(6), Feb., pp. 1870–1877.

[14] Hope, T., Tamari, R., Kang, H., Hershcovich, D., Chan, J., Kittur, A., and Shahaf, D.,

2021. “Scaling Creative Inspiration with Fine-Grained Functional Facets of Product Ideas”.

arXiv:2102.09761 [cs], Feb.

[15] Anandan, S., Teegavarapu, S., and Summers, J. D., 2006. “Issues of Similarity in Engi-

neering Design”. In ASME 2006 International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, American Society of Mechanical

Engineers Digital Collection, pp. 73–82.
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APPENDIX A PRODUCTS AND FUNCTION DESCRIPTIONS

Product Product purpose 
(higher abstraction) 

How product works  
(lower abstraction) 
  

Toy Plane Provide motion for 
entertainment 

Humans pump pressurized air into the plane and throw it 
to give the plane translational motion. The propellors 
rotate. 
  

Alcohol 
Detector 

Measure alcohol Humans turn on the device and blow into it. The device 
collects the breath sample and uses a chemical reaction 
to determine and display the alcohol level.  

All-in-one 
Printer 

Transform paper Humans turn the printer on and insert paper. Print data is 
imported to the printer and then electrical energy is used 
to signal the printer to release the stored liquid ink. The 
ink changes the blank paper to the printed paper and the 
print status is displayed. A scanned document is 
converted to a signal and exported as scan data.  
  

Bike Transfer human Humans pedal to provide mechanical energy for 
translational motion to transport themselves.  

Blower/ 
Vacuum 

Import air and debris 
and expel air 

Humans turn on the device and electrical energy is used 
to signal the blower or vacuum setting. Air is expelled in 
the blower setting. An air and debris mixture is taken in 
and the debris are stored in the vacuum setting.  

CD Player Read a CD Humans insert a CD and turn on the player. Electrical 
energy is used to start mechanical rotation of the CD and 
the lens focuses electromagnetic energy (laser) on the 
moving disk to read it and play the relevant audio. 
Buttons are used to control other actions such as pause 
and repeat.  
  

Drink 
Cooler 

Transfer thermal 
energy 

Humans place the device on a surface and places a cup 
on top. Electrical energy is used to start mechanical 
rotation of a fan and extract heat. The fan expels air and 
the heat is transferred out. 
  

DVD 
Player 

Read a DVD Humans insert a DVD and turn on the player. Electrical 
energy is used to start mechanical rotation and the lens 
focuses electromagnetic energy (laser) on the moving 
disk to read it. The electromagnetic energy is changed to 
electrical energy, which is used to display the video and 
play audio. Buttons are used to control other actions such 
as pause and eject. 
  

Nerf Gun Export ammo Humans load the ammo, pump air into the gun, and pull a 
mechanical trigger. The pressurized air causes 
translational motion of the ammo and the gun emits 
noise. 
  

Game 
Controller 

Control computer Humans push mechanical buttons or directional joysticks 
to actuate an electric signal. The electric signal is turned 
into a control signal that sends data to the connected 
electronic device as well as into electromagnetic energy 
(light) and mechanical vibration on the controller.   
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Power 
Razor 

Separate hair from 
human 

Humans provide translational motion to the razor over the 
surface of their skin through their hands. Electrical energy 
is converted to mechanical energy in the razor to cut the 
hair and separate it from the surface of the skin. The 
razor releases the cut hair, heat, and noise. 
  

Stapler Couple paper Humans store staples in the stapler. Paper is positioned 
between the top and bottom housing of the stapler and 
force is applied to the top housing by the hand. The 
staple is separated from other staples and couples the 
sheets of paper together. The stapler releases the 
stapled pages and noise.  
  

Hulk 
Hands 

Emit sound for 
entertainment 

Humans place their hands in the gloves. The gloves 
detect and process an electrical signal from human 
movement. The electrical signal is converted to noise. 
  

Lawn 
Mower 

Separate grass from 
ground 

Humans push the lawn mower to add translational motion 
and turn it on. Liquid fuel is stored and the chemical 
energy in it is converted to mechanical energy. The 
mechanical energy is used to cut the grass and expel the 
cut grass pieces. The lawn mower releases heat, noise, 
and fumes.  
  

Quick 
Grip Vise 

Secure solid Humans position the object and secure it by applying 
force to clamp it.  
  

Scooter Transfer human Humans provide or stop translational motion to transport 
themselves. 
  

VHS 
Player 

Read a VHS tape Humans turn on the player insert the tape, which is 
sensed and then guided in. Electrical energy is used 
mechanically translate the tape and then to start 
mechanical rotation of the wheels. The magnetic tape 
reel is read and encoded into video and audio signals, 
which are played.  Electrical energy is also converted to 
electromagnetic energy (light) to indicate the status. 
Buttons are used to control other signals such as stop 
and eject.  
  

Vise Grip Secure solid Humans position the object and secure it by applying 
force, changing its status from unclamped to clamped.  

Water 
Pump 

Move liquid Humans turn the pump on. Electrical energy is converted 
to mechanical energy and then to pressurized air within 
the pump, which moves the liquid. Heat, noise, and 
pressurized air are released.  

Zip Disk 
Drive 

Read a zip disk Humans turn on the reader and insert a zip disk, which is 
sensed and guided in. Electrical energy is converted to 
mechanical energy to rotate the disk and to actuate 
translation for the reading head. The magnetic energy 
from the disk is converted to electrical energy and is 
exported as data. 
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