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ABSTRACT
Subjective attributes play a significant part in the assess-

ment of user-facing products. Unlike performance requirements,
these quantities are best evaluated through human feedback.
While people share commonalities in their evaluations, allow-
ing personalization when quantifying these subjective attributes
may improve the alignment between computational and human
representations of design information. We investigate this topic
through a study in which participants (N = 56) make a series
of pairwise decisions between parameterized mugs, and indicate
their perceptions of how comfortable each is to hold. Interac-
tive Bayesian optimization is used to adaptively arrive at a de-
sign that optimizes this subjective quantity. Participants guide
the model through only their own decisions or make decisions
using a model that has already been trained with simulated data
(N = 25) or data from the real decisions of other participants (N
= 31). The resulting designs are evaluated across the different
cases, showing the impact of capturing individual and aggregate
perceptions of subjective quantities. The findings imply that bal-
ancing aggregate and individual-level decisions within models
simultaneously results in the best alignment with human percep-
tions of subjective attributes. Further implications for design
include the potential for personalized control over subjective at-
tributes for designers, users, or users-as-designers.

1. INTRODUCTION
In addition to satisfying functional requirements, product

development relies on the creation of products that will be de-
sirable to users in ways that are difficult to evaluate. While com-
putational tools have the potential to augment designers’ abili-
ties, embedding human input directly within computational de-
sign approaches, leveraging the advantages of both humans and
computers, is necessary to address subjective dimensions of de-
sign. For example, data regarding the higher-level use or context-
related perceptions of products, referred to as product seman-
tics [1], are highly subjective and difficult to represent computa-
tionally. Approaches to assess product semantics [2], or quantify
user preferences more generally, make it possible to include hu-
man input into computational design methods [3–9]. A limitation
of perceptual embeddings and many preference models is that
they often represent group-level perceptions. However, individu-
als’ perceptions may be at odds with this group-level perception.
Prior work in design research has noted that significant differ-
ences can arise in preference from person to person [7]. Interest
has increased in capturing “personal style” in the context of de-
sign [10]. In order to enable better interaction with designs at a
subjective, semantic level, it may be helpful to individualize rep-
resentations of these subjective attributes. In particular, the aim
of the study is to gain insight into how individual differences may
impact any quantification of subjective attributes in comparison
to aggregate representations.

Focusing on the product semantic of “elegance,” Poirson
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et al. use interactive evolutionary computing (IEC) to move
towards incorporating individualized perceptions [11]. While
IEC can be used to find outcomes optimized for the subjective
attribute, it can be helpful to learn a “function” that represents
the perception of the attribute (much like a reward function in
human-robot interaction [12]). Such a function can then be
utilized for further decisions, such optimizing that attribute for a
different design with the same high-level features or considering
tradeoffs with other subjective attributes. An alternative method
that has become popular for its flexibility and viability with
smaller amounts of data is Bayesian optimization (BO). BO
can reach an optimal outcome much like IEC, but importantly,
it does so through a surrogate function that approximates the
hard-to-evaluate, unknown function [13, 14] Using BO for
individual users is particularly promising, for example, in the
case of assistive technology such as exoskeleton gaits or hearing
aids [15, 16]. This study builds upon prior work by applying a
human-in-the-loop BO method (based on pairwise decisions and
design modifications) to assess a subjective characteristic and
empirically evaluate the alignment between human perceptions
and the computationally optimized results. Pairwise decisions
are collected from participants to model their perceptions of a
subjective attribute through interactive Bayesian optimization,
utilizing the test example of a parameterized drinking mug
and how comfortable the mug will be to hold in their hands,
individually. Highly individualized models are compared to
those that involve aggregate data to assess if and how subtle
individual perceptions can impact models of hard-to-measure
quantities. Thus, a two-stage online study is used to address the
following research question:

How do individual and aggregate models impact alignment
of outcomes with a subjective attribute?

2. RELATED WORK
Prior research on methods for quantifying subjective at-

tributes and preference modeling, areas that have been well stud-
ied within engineering design, are reviewed in this section. Rel-
evant to the methods used here, Bayesian optimization and its
applications in design or other domains are also reviewed.

2.1 Assessing Subjective Attributes for Design
There have been many efforts to quantify the perceptual

space of user needs (“product semantics”). Within computer
graphics, several approaches have been taken to map subjective
semantics to 3D geometries. For example, geometric elements
that preserve stylistic similarity between 3D shapes have been
used for transferring styles to functionally compatible shapes
[17]. Another approach has used crowdsourced pairwise com-
parisons to map subjective attributes (e.g. comfortable, sporty,
etc.) directly to geometry using continuous deformation shape

editing [18]. Several approaches have also been taken to model
preferences related to product semantics so they can be integrated
within design processes. Kansei engineering is a popular ap-
proach to extracting the desired emotion from a product [19].
Rating-based semantic differentials, such as those used in Kan-
sei engineering, are one way to quantify subjective attributes
and related preference. For instance, Reid et al. use ratings
to quantify a specific product semantic, perceived environmen-
tal friendliness (PEF), generating new designs that better satisfy
the subjective attribute [20]. This work also uses a singular sub-
jective attribute, comfort, as an example. However, as ratings
(or methods such as ranking or clustering) can require higher
effort [21], pairwise decisions are used, as in [18]. Another ap-
proach to capturing product semantics has been to utilize multi-
dimensional scaling to build similarity-based perceptual embed-
ding spaces and relate this space to vectors of various semantic
attributes [2,22,23]. Our prior work has also used perceptual em-
bedding spaces for difficult-to-capture quantities [24]. However,
a challenge is that these perceptual embeddings do not capture in-
dividual differences in how people make their judgments, which
has been found to impact psychological spaces [25]. Therefore,
considering individualization is central to this research. A sim-
ulated experiment also shows that when crowd-level preferences
form, heuristics from the crowd information can increase the ef-
ficiency of eliciting preferences [26]. This is taken into account
in this study by including a case where information from the
“crowd” is used to initialize the model before individual deci-
sions.

2.2 Preference Learning for Design
In this work, “preference” is considered only along a specific

subjective dimension. However, more broadly, preference mod-
eling has been applied to engineering design extensively. Early
work in using preference learning techniques for product design
uses a lottery question-based framework to create utility func-
tions that reflect a designer’s priorities [27]. In subsequent work,
utility functions are considered extensively. Though the use of
utility analysis has its limitations in engineering design, a major
benefit is its ability to “model subjective tradeoffs, particularly
those that are nonlinear and/or that must be made under uncer-
tainty,” which can be of particular use for adapting to individu-
als [28].

A common method to model preference is to determine the
expected form of a utility function and then estimate weights via
a discrete choice experiment, where participants make decisions
between a number of choices (often pairwise). Approaches have
been developed to incorporate form (generally, aesthetics) into
these utility functions [3, 8, 29]. Often, preference models are
used to analyze tradeoffs between function and a subjective at-
tribute (most often form) [4, 7, 30]. The methods used in the
above studies allow the analysis of attribute weightings to de-
termine their impacts separately, but the presence of interaction
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effects can be a challenge [31].
Prior work has also considered methods that can better cap-

ture nonlinearities inherent to subjective evaluation. For exam-
ple, support vector machines (SVMs), Markov chains, genetic al-
gorithms, or artificial neural networks (ANNs) have been used to
map subjective attributes to design variables non-parametrically
[5, 11, 32, 33]. Burnap et al. successfully demonstrate feature
learning to predicting preferred designs. Feature learning is a
promising approach to quantifying subjective semantic attributes
at an individual level, but requires the collection of large amounts
of user demographic data [34].

2.3 Active Querying and Bayesian Optimization
In many studies of preference, the choices to be presented

to participants are determined ahead of time based on a random
sample, D-efficient main effects, or Latin square design among
others [6, 7, 20, 31]. However, active learning can address some
of the challenges associated with design of experiments and indi-
vidual differences. Active querying has been used for preference
elicitation in engineering design, allowing quick convergence to
a true utility function for a multi-objective problem [35]. Ac-
tive preference learning has also been applied to finding the best
product concepts when systematically assigning weights to prod-
uct attributes is difficult [36]. Specifically, SVMs and ANNs
have been used with a small number of active queries to find
rankings for concepts that align with what an experienced de-
signer selects manually. Active learning has also been applied to
quantify form and function tradeoffs [9]. Although active learn-
ing is a challenge itself due to the high dimensionality of design
spaces, this study uses Bayesian optimization and active learning
in order to allow adaptive data collection. Bayesian optimiza-
tion (closely related to Kriging models from geostatistics [37])
is a method that allows a blackbox function to be optimized.
Within engineering design, Bayesian optimization has been used
in cases when high-fidelity simulations are computationally ex-
pensive to run [38,39]. More importantly, it is particularly useful
for the evaluation of subjective attributes since it is difficult to
assume a functional form that will be appropriate for a person’s
judgments. Specifically, using Gaussian Processes (GPs) allows
non-parametric estimation of a person’s utility function, where
the form of the function does not have to be specified ahead of
time (but smoother functions are preferred) [13]. Active learning
allows this to be done efficiently with as few evaluations of the
quantity of interest as possible. Bayesian optimization methods
have been explored in many domains, including visual paramet-
ric design, to tackle target-oriented cases when high-level feed-
back is easier to provide than tweaking parameters [40–42]. It
has also been used in human-robot interaction to learn reward
functions [12] and for exoskeleton gait optimization, using hu-
man feedback to find preferred gaits [15]. Relevant work within
engineering design similar to the approach used in this study uses
Bayesian optimization and heuristic querying to elicit car form

preference [14]. We build on these prior approaches to create an
interactive optimization process based on pairwise decisions and
feedback through design modification, which is then used to in-
vestigate individual and aggregate-level perceptions of subjective
semantic attributes.

3. METHODS
Pairwise queries, generated actively, were used to find de-

signs that optimize a subjective attribute. These outcomes were
evaluated and compared across individual and aggregate models.
The interactive optimization method and the study procedure are
outlined in the following section.

3.1 Interactive Optimization
3.1.1 Design Example The chosen design example

was a drinking mug, while the subjective attribute of interest was
how comfortable the mug was to hold. The subjective dimension
of “comfortable-to-hold” (vs. a more abstract consideration like
“elegance”) was considered because there are known aspects of
the design, related to variations in how the mug can be held, that
are likely to be associated with perceptions and can be under-
stood more clearly. This attribute is not strictly based on visual
perception, but since a mug is an everyday object that most par-
ticipants have picked up and used, it was expected that decisions
based on visual information were sufficient. The 3D model of the
mug (shown in Figure 1) consisted of a cup with a fixed height,
thickness, and bottom radius and a fixed thickness handle created
from a Bezier curve with three control points. The mug had five
variable parameters: the taper of the cup (cup angle), the dis-
tance between the first and last handle control points along the
cup surface (handle length), the location of the center of first and
last control points along the cup surface (handle location), and
the x (handle width) and y (handle angle) positions of the middle
control point. These parameters were selected to directly map
to how the mug can be held using the handle and the outside of
the cup. The parameter bounds were set to extremes that were
perceptually reasonable for mugs that exist in reality (shown in
Figure 1b and 1c) and these bounds were used to range normal-
ize the design space to a five-dimensional unit hypercube. The
variables were treated as continuous within the hypercube, but a
small discretization was used during query selection.

3.1.2 Gaussian Process Model A GP model is a
surrogate model, specifically a multivariate Gaussian, specified
by a mean function and a covariance kernel. The GP used to
model the pairwise queries in our study was specified by Chu
and Ghahramani, and has been commonly applied to preference
learning tasks [43]. Using a probit likelihood, binary observa-
tions can be used to infer a latent function (in our case, the par-
ticipant’s perception of the subjective attribute related to the de-
sign). Based on Bayes’ theorem, the posterior probability func-
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(a) Parameter types and labels

(b) Min. bound

(c) Max. bound

FIGURE 1: Design space of parameterized mug with correspond-
ing feature labels presented to participants.

tion, which is the probability of a function given the data, is

P( f |D) =
P( f )
P(D)

P(D| f ) (1)

where P( f ) is the prior (probability of the function), P(D) is the
marginal (probability of the data being observed), and P(D| f ),
the likelihood, is the joint probability of observing the preference
data given their latent function values,

P(D| f ) =
m

∏
k=1

P(vk ≻ uk| f (vk), f (uk)). (2)

The probability in the likelihood above is 1 if f (vk)≥ f (uk) and
0 otherwise, in the ideal case, but a more tolerant formulation as-
sumes that the latent functions are contaminated with noise that
follows a Gaussian distribution. Therefore, at each pairwise de-
cision, the model can maintain an estimate of the participants’
utility function, with uncertainty, over a set of points. The max-
imum posterior mean, the point that maximizes the mean of the
estimated functions, can be used to approximate the “best” point
throughout the optimization process.

An implementation from the BoTorch Python library was
used to fit the model and sample from its posterior at each step1.
The BoTorch implementation uses a Laplace approximation of
the posterior and a radial basis function kernel (also known as
the squared exponential kernel) as the covariance function [44].

3.1.3 Active Query Generation There are several
options for actively determining the next query to present to users
in order to efficiently model their preference decisions. Our ap-
proach was adapted from the algorithm used by Tucker et al. for
exoskeleton gaits [15], which is based on Thompson sampling
and one-dimensional subspaces. Similar line-search approaches
have been utilized in other domains such as visual design [40].

1PairwiseGP from https://botorch.org/

While other common acquisition functions (e.g., expected im-
provement or upper confidence bound) were considered, this ap-
proach was chosen due to its tractability for balancing explo-
ration and exploitation at higher dimensions and variable levels.
The hyperparameter (m) for discretizing the design space was set
to be as small as possible while maintaining an evaluation time
reasonable for human-computer interaction. A brief summary is
included below:

1. The initial comparison is collected using random points (Di).
2. The model is updated with the initial comparison (Di). If

there is no recorded “best” point already, the one selected
initially is set as the best point (Bi).

3. A function ( fs) is sampled from the posterior.
4. A line (L) in a random direction through the best point Bi in

the design-space hypercube [0,1]d is found (d = 5 here).
5. The function fs is evaluated over this line L and observed

data D, discretized by a hyperparameter m (m = 0.005 here).
6. The point maximizing fs is presented as the next query (Ni).
7. The new best point Bi+1 is the one that maximizes the pos-

terior mean ( fµ ) over line L and observed data D.
8. The model is updated with the new comparison or from the

comparison/s generated from feedback (Di+1).
9. The process is repeated from 3 with the new best point Bi+1.

10. After all trials, the final “best” point is set as the “comfort-
optimized” design (B f inal).

Co-active feedback was included as an alternative to direct
pairwise selection to improve data quality by mitigating cases
when people are unable to perceive small visual differences.
Feedback was incorporated in our study through eliciting higher-
level design modifications (straighter or more angled cup, taller
or shorter handle, wider or narrower handle, move handle up or
down, make handle bigger or smaller), though these descriptions
may be difficult to specify in more complex cases. The modi-
fication enacted by these feedback options was a 10% increase
or decrease in the single parameter value (or two parameter val-
ues in the case of two feedback options: increasing or decrease
“handle size”). Since feedback was given with reference to both
designs, it was incorporated as a preference over both of the de-
signs. In our specific implementation, if the feedback was out
of bounds, the preference was recorded as the reverse with ref-
erence to the side that was selected. Bounds were included in
this study for simplicity of normalizing inputs for the model.
The feedback mechanism could remove the need for the design
space to be bounded strictly if alternative approaches are found
for normalization. There are a couple limitations of the active
querying method implemented. First, it requires the variables to
be continuous, which is not always the case for complex design
spaces. Second, there is the possibility for repeat comparisons if
the model does not find a better query point along the randomly
selected line, which was not accounted for in our study.
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FIGURE 2: Study procedure followed by each participant. The pairwise trials were repeated twice, once with a model containing only
individual data and once with a model containing both aggregate and individual data. Three outcomes were compared: the result of the
adaptive model and the result of a non-adaptive model with only aggregate data.

3.2 Study Procedure
3.2.1 Participants Data from 56 participants (29

women, 24 men, 3 nonbinary) were collected with approval from
an Institutional Review Board. These participants were recruited
from university mailing lists that primarily consist of engineering
undergraduate or graduate students and as such, do not necessar-
ily represent a general population.

3.2.2 Pairwise Trials and Evaluation Participants
made decisions over two sets of 30 pairwise trials. The number of
trials was determined based on prior work, though it is possible
fewer queries could be used. The difference between the two sets
was solely the data used to initialize the model. In one condition,
the model had no initial data and was updated using the deci-
sions that the participant provided in the moment (referred to as
Individual Only or I). In the other condition, the model was ini-
tialized with comparisons generated by a simulation or the first
group of participants, and then updated using the participant’s
in-the-moment decisions (called Aggregate-Informed or A). No
time discounting or weighting of more recent answers was in-
cluded. The condition order was randomly determined when the
participant started the study. After each set of trials, during which
the model was updated and queries were actively presented, par-
ticipants were asked to choose between the comfort-optimized
design (B f inal) and a random design for a set of 5 validation tri-
als. They were not explicitly aware of the transition between
model updating and validation. At the end, participants also com-
pleted 5 validation trials for a third condition (called Aggregate
or G) where they selected between the maximum posterior mean
design from the Aggregate model (evaluated over a line L and
observed data D) and a random design. The Aggregate model
was initialized with comparisons generated by either simulation
or other prior participants, but not updated with any participant-
specific data. All three conditions are summarized in Table 1.

After all trials were completed (75 in total), participants
compared the comfort-optimized designs (B f inal for each adap-
tive models and the maximum posterior mean for the non-
adaptive model) from each condition and provided a rating and

TABLE 1: Data used to initialize and update the models in each
condition (I, A, G) and for each group (1, 2). I and A re-
sult in varying comfort-optimized designs across participants and
groups while G only results in varying comfort-optimized de-
signs across groups.

Model Input Data Updating Data

Individual (1) None
Pairwise trials

Only (I) (2) None

Aggregate- (1) Simulation
Pairwise trials

Informed (A) (2) Group 1 Individual

Aggregate (G) (1) Simulation
None

(2) Group 1 Individual

ranking. Then, they were allowed to indicate any changes they
would make to those designs. Finally, they were directed to a sur-
vey where they answered several questions about their decision
making. Figure 2 shows the outline of the study.

The study was conducted in two stages. In the first stage,
the Aggregate-Informed model was initialized with comparisons
which were generated by a simulation. This simulation gener-
ated comparisons using two utility functions that would be opti-
mized by minimizing the distance to two design points (percep-
tually different, but “reasonable” looking designs). One of the
two utility functions was used randomly with a random amount
of noisiness to represent each “participant.” Data from 25 par-
ticipants was collected in this stage (Group 1). In the second
stage, the data from the Individual Only condition of Group 1
was used for the Aggregate and Aggregate-Informed models of
Group 2. Data from 31 participants was collected in this stage
(Group 2). Although a group of 25 may not be sufficient to
represent a true “crowd”, increasing the amount of data in the
Aggregate-Informed adaptive model increases the computation
time per trial and therefore, investigation of crowd size is left to
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future consideration.

3.2.3 Interface The custom web interface (developed
using Flask and hosted on a Google Compute Engine virtual ma-
chine with 8vCPU and 16GB memory) for the pairwise trials is
shown in Figure 3. Inspired by the interface in [21], participants
could see instructions, followed by side-by-side 3D models of
the two designs being compared. Each 3D model was dynami-
cally rendered (using OpenJSCAD and three.js) during the data
collection, similar to [9]. There were two buttons to select ei-
ther option and a third button to provide a design modification.
The third button revealed 12 higher-level options for this feed-
back (corresponding to increases or decreases in parameter val-
ues), shown in Figure 3. Before the pairwise trials, participants
had the opportunity to explore the design space to better under-
stand the meaning behind these feedback options (see Figure 2).
After the pairwise trials, participants conducted a rating/ranking
and indicated any modifications they would make to the optimal
designs, after which they were directed to a survey.

FIGURE 3: Participants made pairwise choices using the inter-
face above. If neither design was perceived as comfortable to
hold, a third button revealed choices to suggest a modification.

4. RESULTS
Several models, resulting in comfort-optimized designs,

were produced through a human subjects study (N = 25 and N
= 31). These models were provided different initial information,
either none, simulated aggregate data, or real aggregate data, to
guide the interactive optimization. Outcomes from the interac-
tive optimization and a non-adaptive aggregate model were com-
pared to understand the impact of individualizing the computa-
tional representations of subjective attributes.

4.1 Evaluating interactive optimization outcomes
The outcomes (each participant’s unique comfort-optimized

design from the two adaptive models and the group comfort-

optimized design for the one non-adaptive model) were evaluated
for whether they successfully aligned with participants’ percep-
tions. Both a hit rate obtained separately for each condition and
a rating that directly compared all conditions were used for eval-
uation.

4.1.1 Hit rate The hit rate refers to how often a partic-
ipant selected the model-predicted comfort-optimized design vs.
a random design for the five validation comparisons. Therefore,
the hit rate can help demonstrate whether a model can achieve a
comfort-optimized outcome relative to the rest of the considered
design space. Mann-Whitney U tests show a significant differ-
ence in hit rate across groups for the Aggregate (U = 219.5, p =
0.003, 1: Mdn = 0.8, 2: Mdn = 1) and Aggregate-Informed
(U = 122.0, p = 9.25×10−7, 1: Mdn = 0.6, 2: Mdn = 1) condi-
tions but not the Individual Only condition (U = 430.5, p = 0.39,
1: Mdn = 1, 2: Mdn = 1). The results indicate that using
simulated data to initialize the model negatively impacts out-
comes, with participants often able to find a random design bet-
ter aligned to their perceptions.

A non-parametric Friedman test (similar to a repeated mea-
sures ANOVA) shows a significant difference between the hit
rates across the conditions for Group 2 (χ2(2,N = 31) = 6.2, p=
0.044). Post-hoc Wilcoxon signed-rank tests with a Bonfer-
roni correction (αnew = 0.05/3 = 0.017) reveal that this may be
driven primarily by a difference between the Individual Only and
Aggregate-Informed condition (W = 11.0, p = 0.018). However,
the median hit rates for Group 2 (I: Mdn = 1,Range = [0.4,1] A:
Mdn= 1,Range= [0.6,1] G: Mdn= 1,Range= [0.2,1]) demon-
strate the success of finding comfort-optimized outcomes using
the models generally.

4.1.2 Ratings Ratings of design outcomes in each con-
dition are shown in Figure 4 for Group 2, based on participants’
answers to how well aligned each design was to their perception
of a mug that is comfortable to hold. It should be noted that
the ratings were completed by comparing each different condi-
tion directly and therefore also constitute a ranking. Ratings
are highest for the comfort-optimized design from the Aggregate-
Informed condition (I: Mdn = 5 A: Mdn = 6 G: Mdn = 5).
There are differences between Individual Only and Aggregate-
Informed outcome ratings (Mdn = −1,Range = [−5,2]) and
Individual Only and Aggregate ratings (Mdn = −1,Range =
[−5,3]), where Aggregate-Informed and Aggregate tend to be
rated higher Individual Only. The difference between Aggregate-
Informed and Aggregate ratings (Mdn = 1,Range = [−2,3])
shows that Aggregate-Informed also tends to be rated higher than
Aggregate. Group 2 appears to have some commonality with
Group 1, the source of the aggregate data, regarding comfort per-
ceptions. This commonality, combined with the ability to guide
the outcome with individual decisions might explain the high rat-
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Rating: how well does the design align with your perception of a mug that is comfortable to hold?
1 (Not at all) 2 3 4 5 6 7 (Extremely)

FIGURE 4: Ratings for the Individual Only (Mdn = 5),
Aggregate-Informed (Mdn = 6), and Aggregate outcomes
(Mdn = 5) in Group 2.

ings and hit rate for the Aggregate-Informed outcomes for Group
2 compared to the other conditions. At the same time, individual
participants’ rankings (obtained from their comparative ratings)
show that 25% (8 of 31) of the participants rank the result of the
Individual Only condition as the most aligned with their percep-
tion of comfortable. While not the majority, this subset could be
considered for application of personalization.

4.2 Differences reflected by individual vs. aggregate
models

The optimization process and outcomes were further ana-
lyzed to understand individual and aggregate perceptions of the
subjective attribute. Only the data from Group 2 (non-adaptive
aggregate model constructed with real data from Group 1) was
considered in this analysis.

4.2.1 Exploration For each participant, the designs
seen during the interactive trials (Individual Only and Aggregate-
Informed) vary because of the adaptive querying. The general-
ized variance (determinant of the covariance matrix) of all of the
designs that were visited throughout the process can give insight
into the extent the design space was explored during the process.
The generalized variance for designs visited by participants in
the Individual Only condition (Mdn = 1.07 × 10−8) is greater
(W = 84.0, p= 0.0013) than that of the Aggregate-Informed con-
dition (Mdn = 5.34×10−11), using a Wilcoxon signed-rank test.
The generalized variance of participants’ final outcomes is simi-
larly greater for the Individual Only condition (9.72×10−7) than
for the Aggregate-Informed condition (1.33× 10−9). Since the
Aggregate-Informed condition allows participants to start from
a similar “group-level” design, it follows that the spread of de-
signs visited and the corresponding diversity of outcomes for this
condition is lower. However, based on the hit rates and ratings,
less exploration does not have a negative impact if the starting
point is more aligned with human perceptions.

4.2.2 Outcomes The final outcomes that result from
the two interactive conditions (I and A), compared to the Ag-
gregate outcome (G), which involves no intervention of the indi-
vidual participant, are shown in Figure 5 as a 2D projection of
the 5-dimensional design space (only for visualization). The ex-
amples demonstrate the diversity of participants’ final outcomes.
Notably, in many cases the non-adaptive aggregate model may
be sufficient, based on the clustering of number-one ranked indi-
vidualized outcomes around the group-level outcome. However,
in some cases, participants consider outcomes that are not close
to the aggregate as best aligned with their perceptions of com-
fort.

As participants were not informed that they were experi-
encing different conditions, with all trials presented in the exact
same way, it is expected that differences are influenced by the
initialization data provided to the model or the difference of an
individual’s preference (e.g., an “extreme” vs. not) from the Ag-
gregate outcome. The standardized Euclidean distance between
each individual outcome and the Aggregate outcome demon-
strates a measure of this difference for both the Individual Only
(M = 0.53,SD = 0.29,Range = [0.04,1.20]) and Aggregate-
Informed (M = 0.31,SD = 0.24,Range = [0.01,0.88]) condi-
tions. As expected based on the study design and shown by the
generalized variance over the comfort-optimized outcomes, the
average distance from the Aggregate is higher for the Individ-
ual Only condition than for the Aggregate-Informed condition.
There is some evidence of a negative correlation between this
Euclidean distance and the Aggregate hit rate (ρs = −0.43, p =
0.02). However, there is no evidence of such a relationship with
the Aggregate rating (ρs = −0.19, p = 0.31). Increases in the
distance between an individualized outcome and the aggregate-
level outcome appear to be associated with a decreasing hit rate.
The hit rate is a relative measure of the outcome, indicating that
participants with greater differences are more likely to select a
random design over the group-level comfort-optimized design.
However, this relationship is not reflected through the rating, an
“absolute” outcome measure. This may be explained by par-
ticipants being satisfied enough with several options within the
considered design space.

4.3 Parameter-level differences reveal driving factors
of individual differences

Though the designs were considered holistically, the out-
comes can also be examined to investigate where variations were
most prevalent and whether certain features drove individual dif-
ferences. Figure 6 shows that certain parameter values were
common across the final outcomes for all participants, such as
a longer handle. Other parameters, such as the handle angle
demonstrate more variety. The parameter with the highest stan-
dard deviation among best designs is handle location (SD= 0.36)
for the Individual Only condition and handle width (SD = 0.28)
for Aggregate-Informed condition. The parameter that differs the
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FIGURE 5: Visualization and examples of comfort-optimized (“best”) design outcomes from both sets of pairwise trials vs. the aggregate
(Group 2 only). The (green) highlights mark if that design was ranked by the participant as the design that most aligned with their
perceptions of comfort.
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FIGURE 7: Self-reported rankings on the importance of each pa-
rameter for participants’ decision making (1 = Most important).

least is handle length (SD = 0.21 and SD = 0.05) in both cases.
Self-reported rankings of how important each parameter was

to the participant when making their decisions (ties allowed) are

shown in Figure 7. Participants demonstrate variety in their im-
portance rankings. The parameter that is considered the most
important by a plurality of participants is handle length. Corre-
spondingly, the smallest standard deviation in outcomes for both
conditions is the handle length, which demonstrates one com-
mon feature across the group. The handle width is considered
the second most important by a plurality of participants. This
feature also exhibits the highest standard deviation amongst par-
ticipants’ best designs from the Aggregate-Informed condition.
Thus, in this example, it appears that varying the handle width
may have driven many of the individual differences.

5. DISCUSSION
To allow computational methods to better align with human

perception, it is important to understand how human perception
can be best embedded into optimization processes. In this work,
we explore how interactive optimization methods lead to out-
comes that are well or not well-aligned with humans’ percep-
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tions of the subjective attribute of comfort. Furthermore, the
use of a GP allows for the estimation of a surrogate function
which can represent such a semantic scale in relation to design
features, though this function is more representative of positive
values (more comfortable) than negative ones (less comfortable).
In addition, we identify how different outcomes might arise when
aggregating this perception across a group of individuals. We
find commonalities in human perception within a group that can
be leveraged, and find that addressing subtle differences of per-
ceptual preference can be beneficial for satisfaction in outcomes.

5.1 Interactive optimization can capture human per-
ceptions of a subjective attribute

The results of this study indicate that the interactive mod-
els are able to produce outcomes that capture perceptions of the
subjective attribute considered here reasonably well, based on
the high hit rates across both Group 1 and 2. Alignment of in-
dividual outcomes with perceptions of comfort is rated relatively
highly, with medians of 6 and 5 out of 7. Notably, when the data
is simulated and does not match how humans make real decisions
(e.g., prioritizing a specific design attribute like handle length),
including aggregate data is detrimental, as participants are un-
able to reach an area of the design space that reflects their per-
ceptions. However, when the data included reflects real human
decisions, including this information helps improve upon the in-
dividual models, which already perform relatively well. Prior
work implies through simulated experiments that changing the
initial guess based on similar users is only valuable when the
optimally-preferred designs are clustered [26]. Our empirical
results support this based on the difference in results from ini-
tialization with simulated vs. real data. In general, the example
considered here as well as bias in the participant pool likely in-
duces more subtle individual differences in perception, whereas
different examples may elicit larger differences that may lessen
the benefits of including aggregate data.

5.2 Individualizing models of the perceptual attribute
can improve satisfaction with optimized outcome

The use of individual-level models to enable adaptive de-
sign exploration along subjective semantic attributes is exam-
ined. Design-relevant computational approaches such as seman-
tic shape editing rely on the creation of large aggregate mappings
of semantics to geometries [18]. Here, we find that such an ap-
proach can work well, but it is possible to move towards person-
alizing the semantic mappings in order to capture subtle differ-
ences across individuals’ perceptions. Prior work within the de-
sign field has successfully moved towards both crowd-based and
adaptive, personalized methods in the context of inspirational
stimuli [45, 46]. In this study, the individual models are able to
lead to satisfactory outcomes with relatively few queries. How-
ever, results show that incorporating real group-level data can
lead to better alignment with participants’ perceptions, as shown

by both their decisions and self-reported measures. Therefore, in
practice, individualized models may be more useful when there
are highly diverging views of the dimension (e.g., particularly
abstract concepts) than in the case considered here.

5.3 Guidance during interactive optimization
While more of the design space is explored during the Indi-

vidual Only condition, it appears that benefit of the Aggregate-
Informed condition is its ability to reach a general consensus of
a comfortable mug and then allow adaptation to more subtle user
preferences. This adaptation is likely enabled by guidance to-
wards parameters that are more important from prior data (which
is unavailable when the model starts from scratch), supported by
the parameter-level analysis. Chan et al. find in a study compar-
ing human and optimizer-led design, that though performance-
related outcomes can be improved, people lose agency and own-
ership when they are being guided by an optimizer [47]. Some
of this can be mitigated by allowing people to provide co-active
feedback, like in the form of design modifications here. Peo-
ple may have been more satisfied with outcomes because they
had the option for active guidance rather than only passive eval-
uation. People may also feel frustrated if they do not under-
stand Bayesian optimization, which trades off exploration and
exploitation [47]. Thus, it may appear the optimizer is giving
worse examples when it is simply trying to gain more informa-
tion. Open-ended comments from the survey in our study indi-
cate that some participants felt like they could see the impact of
their decisions and feedback throughout the process, while oth-
ers felt frustrated if they felt like their decisions did not make a
difference or if the differences were not visually perceivable.

5.4 Limitations and Future Work
Some limitations and further work should be considered.

Because the adaptive querying uses a random line search and
the optimization uses sampling, there is a degree of randomness
in what participants saw during the study. Furthermore, the com-
plexity of the design may impact the optimization performance
and the method has not been tested beyond six dimensions [15].
Some limitations also relate to the design representation. Most
notably, it is known that evaluations can differ between digital
and physical models [48]. However, the approach can be used to
narrow the design space down for more expensive design repre-
sentations to be evaluated. Additionally, in this study, the design
was parameterized into five features that were assumed to be rel-
atively important for the subjective attribute being considered.
The surrogate function for each participant could likely be used
to optimize a mug of a different shape for “comfort” as long as it
can be parameterized by the features represented here (e.g. han-
dle length, handle width). However, this is not inclusive to many
other features people may have considered, which may account
for further inter-individual differences. In our case, the adap-
tive querying was conducted using design features that mapped
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directly to low-level parameters. Participants were allowed to
provide slightly abstract feedback, but an interesting area of fu-
ture investigation might be to consider cases where higher-level
conceptual feedback does not have a one-to-one or one-to-two
mapping with the low-level variable. It should also be noted that
the approach taken here may have to be modified if the adjectives
describing the semantic pair are very different (e.g., traditional to
elegant) compared to a quantity (less or more comfortable).

Prior work notes that human steering can impact optimiza-
tion if information about how the process works is provided [49].
Therefore, it is possible that if participants were able to under-
stand the impact of their actions on the optimization process, they
would reach better outcomes. Furthermore, with the increasing
prevalence of generative models, efforts have been taken to guide
them to better align with subjective evaluations in the context of
design [50–52]. The approach taken in the study conducted here
could be used in conjunction with generative models to generate
outputs that are aligned with a specific, personalized semantic
attribute. Such future advances can eventually lead to tools that
enable designers to explore a vast design space while not having
to sacrifice their individualized styles.

6. CONCLUSION
In this paper, interactive Bayesian optimization is utilized

to capture and investigate human perceptions of a subjective at-
tribute. We provide insight into the ability to capture both an
aggregate-level representation and show how subtle individual
differences may result in different outcomes and satisfaction with
these outcomes. The results show that an aggregate-level model
can represent human perception of preferences well, but that in-
cluding individual differences results in even better alignment.
While people may share some commonalities in their percep-
tions, in order to interact with designs at a semantic level, it
may be useful to enable individualized semantic mappings of
subjective attributes to design features. The Gaussian Process
approach, which results in a design optimized for the subjective
attribute for each person, estimates a surrogate function connect-
ing features to perceptions, which can then be used in further
applications.
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